3 research outputs found

    A fluctuation-response relation of many Brownian particles under non-equilibrium conditions

    Full text link
    We study many interacting Brownian particles under a tilted periodic potential. We numerically measure the linear response coefficient of the density field by applying a slowly varying potential transversal to the tilted direction. In equilibrium cases, the linear response coefficient is related to the intensity of density fluctuations in a universal manner, which is called a fluctuation-response relation. We then report numerical evidence that this relation holds even in non-equilibrium cases. This result suggests that Einstein's formula on density fluctuations can be extended to driven diffusive systems when the slowly varying potential is applied in a direction transversal to the driving force.Comment: 5 pages, 5 figure
    corecore