449 research outputs found

    On U_q(SU(2))-symmetric Driven Diffusion

    Full text link
    We study analytically a model where particles with a hard-core repulsion diffuse on a finite one-dimensional lattice with space-dependent, asymmetric hopping rates. The system dynamics are given by the \mbox{Uq_{q}[SU(2)]}-symmetric Hamiltonian of a generalized anisotropic Heisenberg antiferromagnet. Exploiting this symmetry we derive exact expressions for various correlation functions. We discuss the density profile and the two-point function and compute the correlation length ξs\xi_s as well as the correlation time ξt\xi_t. The dynamics of the density and the correlations are shown to be governed by the energy gaps of a one-particle system. For large systems ξs\xi_s and ξt\xi_t depend only on the asymmetry. For small asymmetry one finds ξtξs2\xi_t \sim \xi_s^2 indicating a dynamical exponent z=2z=2 as for symmetric diffusion.Comment: 10 pages, LATE

    Will jams get worse when slow cars move over?

    Full text link
    Motivated by an analogy with traffic, we simulate two species of particles (`vehicles'), moving stochastically in opposite directions on a two-lane ring road. Each species prefers one lane over the other, controlled by a parameter 0b10 \leq b \leq 1 such that b=0b=0 corresponds to random lane choice and b=1b=1 to perfect `laning'. We find that the system displays one large cluster (`jam') whose size increases with bb, contrary to intuition. Even more remarkably, the lane `charge' (a measure for the number of particles in their preferred lane) exhibits a region of negative response: even though vehicles experience a stronger preference for the `right' lane, more of them find themselves in the `wrong' one! For bb very close to 1, a sharp transition restores a homogeneous state. Various characteristics of the system are computed analytically, in good agreement with simulation data.Comment: 7 pages, 3 figures; to appear in Europhysics Letters (2005

    Density Profile of the One-Dimensional Partially Asymmetric Simple Exclusion Process with Open Boundaries

    Full text link
    The one-dimensional partially asymmetric simple exclusion process with open boundaries is considered. The stationary state, which is known to be constructed in a matrix product form, is studied by applying the theory of q-orthogonal polynomials. Using a formula of the q-Hermite polynomials, the average density profile is computed in the thermodynamic limit. The phase diagram for the correlation length, which was conjectured in the previous work[J. Phys. A {\bf 32} (1999) 7109], is confirmed.Comment: 24 pages, 6 figure

    A Position-Space Renormalization-Group Approach for Driven Diffusive Systems Applied to the Asymmetric Exclusion Model

    Full text link
    This paper introduces a position-space renormalization-group approach for nonequilibrium systems and applies the method to a driven stochastic one-dimensional gas with open boundaries. The dynamics are characterized by three parameters: the probability α\alpha that a particle will flow into the chain to the leftmost site, the probability β\beta that a particle will flow out from the rightmost site, and the probability pp that a particle will jump to the right if the site to the right is empty. The renormalization-group procedure is conducted within the space of these transition probabilities, which are relevant to the system's dynamics. The method yields a critical point at αc=βc=1/2\alpha_c=\beta_c=1/2,in agreement with the exact values, and the critical exponent ν=2.71\nu=2.71, as compared with the exact value ν=2.00\nu=2.00.Comment: 14 pages, 4 figure

    On Matrix Product Ground States for Reaction-Diffusion Models

    Full text link
    We discuss a new mechanism leading to a matrix product form for the stationary state of one-dimensional stochastic models. The corresponding algebra is quadratic and involves four different matrices. For the example of a coagulation-decoagulation model explicit four-dimensional representations are given and exact expressions for various physical quantities are recovered. We also find the general structure of nn-point correlation functions at the phase transition.Comment: LaTeX source, 7 pages, no figure

    Finite Dimensional Representations of the Quadratic Algebra: Applications to the Exclusion Process

    Full text link
    We study the one dimensional partially asymmetric simple exclusion process (ASEP) with open boundaries, that describes a system of hard-core particles hopping stochastically on a chain coupled to reservoirs at both ends. Derrida, Evans, Hakim and Pasquier [J. Phys. A 26, 1493 (1993)] have shown that the stationary probability distribution of this model can be represented as a trace on a quadratic algebra, closely related to the deformed oscillator-algebra. We construct all finite dimensional irreducible representations of this algebra. This enables us to compute the stationary bulk density as well as all correlation lengths for the ASEP on a set of special curves of the phase diagram.Comment: 18 pages, Latex, 1 EPS figur

    Electronic correlation effects and the Coulomb gap at finite temperature

    Full text link
    We have investigated the effect of the long-range Coulomb interaction on the one-particle excitation spectrum of n-type Germanium, using tunneling spectroscopy on mechanically controllable break junctions. The tunnel conductance was measured as a function of energy and temperature. At low temperatures, the spectra reveal a minimum at zero bias voltage due to the Coulomb gap. In the temperature range above 1 K the Coulomb gap is filled by thermal excitations. This behavior is reflected in the temperature dependence of the variable-range hopping resitivity measured on the same samples: Up to a few degrees Kelvin the Efros-Shkovskii lnRT1/2R \propto T^{-1/2} law is obeyed, whereas at higher temperatures deviations from this law are observed, indicating a cross-over to Mott's lnRT1/4R \propto T^{-1/4} law. The mechanism of this cross-over is different from that considered previously in the literature.Comment: 3 pages, 3 figure

    Matrix Product Eigenstates for One-Dimensional Stochastic Models and Quantum Spin Chains

    Full text link
    We show that all zero energy eigenstates of an arbitrary mm--state quantum spin chain Hamiltonian with nearest neighbor interaction in the bulk and single site boundary terms, which can also describe the dynamics of stochastic models, can be written as matrix product states. This means that the weights in these states can be expressed as expectation values in a Fock representation of an algebra generated by 2m2m operators fulfilling m2m^2 quadratic relations which are defined by the Hamiltonian.Comment: 11 pages, Late

    Spurious phase in a model for traffic on a bridge

    Full text link
    We present high-precision Monte Carlo data for the phase diagram of a two-species driven diffusive system, reminiscent of traffic across a narrow bridge. Earlier studies reported two phases with broken symmetry; the existence of one of these has been the subject of some debate. We show that the disputed phase disappears for sufficiently large systems and/or sufficiently low bulk mobility.Comment: 8 pages, 3 figures, JPA styl

    Exact Solution of Two-Species Ballistic Annihilation with General Pair-Reaction Probability

    Full text link
    The reaction process A+B>CA+B->C is modelled for ballistic reactants on an infinite line with particle velocities vA=cv_A=c and vB=cv_B=-c and initially segregated conditions, i.e. all A particles to the left and all B particles to the right of the origin. Previous, models of ballistic annihilation have particles that always react on contact, i.e. pair-reaction probability p=1p=1. The evolution of such systems are wholly determined by the initial distribution of particles and therefore do not have a stochastic dynamics. However, in this paper the generalisation is made to p<1p<1, allowing particles to pass through each other without necessarily reacting. In this way, the A and B particle domains overlap to form a fluctuating, finite-sized reaction zone where the product C is created. Fluctuations are also included in the currents of A and B particles entering the overlap region, thereby inducing a stochastic motion of the reaction zone as a whole. These two types of fluctuations, in the reactions and particle currents, are characterised by the `intrinsic reaction rate', seen in a single system, and the `extrinsic reaction rate', seen in an average over many systems. The intrinsic and extrinsic behaviours are examined and compared to the case of isotropically diffusing reactants.Comment: 22 pages, 2 figures, typos correcte
    corecore