511 research outputs found

    Maternal vitamin D status in pregnancy and molar incisor hypomineralisation and hypomineralised second primary molars in the offspring at 7–9 years of age:a longitudinal study

    Get PDF
    Purpose: The study aimed to investigate associations between maternal vitamin D status during pregnancy and molar incisor hypomineralisation (MIH) and hypomineralised second primary molars (HSPM) among children. Methods: The study had a longitudinal design using prospectively collected data from 176 mother and child pairs. Mothers were initially recruited in a randomised controlled trial to assess a pregnancy exercise programme. Along with the 7-year follow-up, we invited the children to a dental examination. The exposure variable was maternal serum 25-hydroxyvitamin D in gestational weeks 18–22 and 32–36, categorised as insufficient (< 50 nmol/l) and sufficient (≥ 50 nmol/l). Negative binomial hurdle models were used to analyse potential associations between the exposure variables and MIH or HSPM. The models were adjusted for potential confounders. Results: Among the children (7–9 years old), 32% and 22% had at least one tooth with MIH or HSPM, respectively. A significant association was found between insufficient maternal vitamin D measured in gestational weeks 18–22 and the number of affected teeth among those with MIH at 7–9 years (adjusted RR = 1.82, 95% CI 1.13–2.93). Conclusion: Considering any limitations of the present study, it has been shown that insufficient maternal serum vitamin D at mid-pregnancy was associated with a higher number of affected teeth among the offspring with MIH at 7–9 years of age. Further prospective studies are needed to investigate whether this finding is replicable and to clarify the role of maternal vitamin D status during pregnancy and MIH, as well as HSPM, in children

    Somatic health among heroin addicts before and during opioid maintenance treatment: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The long-term impact of opioid maintenance treatment (OMT) on morbidity and health care utilization among heroin addicts has been insufficiently studied. The objective of this study was to investigate whether health care utilization due to somatic disease decreased during OMT, and if so, whether the reduction included all kinds of diseases and whether a reduction was related to abstinence from drug use.</p> <p>Methods</p> <p>Cohort study with retrospective registration of somatic disease incidents (health problems, acute or sub-acute, or acute problems related to chronic disease, resulting in a health care contact). Medical record data were collected from hospitals, Outpatients' Departments, emergency wards and from general practitioners (GPs) and prospective data on substance use during OMT were available from 2001 onwards. The observation period was five years before and up to five years during OMT. The cohort consisted of 35 out of 40 patients who received OMT between April 1999 and January 2005 in a Norwegian district town. Statistical significance concerning changes in number of incidents and inpatient and outpatient days during OMT compared with the pre OMT period was calculated according to Wilcoxon signed rank test. Significance concerning pre/during OMT changes in disease incidents by relation to the type of health service contacts, as well as the impact of ongoing substance use during OMT on the volume of contacts, was calculated according to Pearson chi-square and Fisher's exact tests.</p> <p>Results</p> <p>278 disease incidents were registered. There was a reduction in all incidents by 35% (p = 0.004), in substance-related incidents by 62% (p < 0.001) and in injection-related incidents by 70% (p < 0.001). There was an insignificant reduction in non-fatal overdose incidents by 44% (p = 0.127) and an insignificant increase in non-substance-related incidents by 13% (p = 0.741). Inpatient and outpatient days were reduced by 76% (p = 0.003) and 46% (p = 0.060), respectively. The disease incidents were less often drug-related during OMT (p < 0.001). Patients experienced a reduction in substance-related disease incidents regardless of ongoing substance use, however there was a trend towards greater reductions in those without ongoing abuse.</p> <p>Conclusion</p> <p>Although as few as 35 patients were included, this study demonstrates a significant reduction in health care utilization due to somatic disease incidents during OMT. The reduction was most pronounced for incidents related to substance use and injection. Inpatient and outpatient days were reduced. Most probably these findings reflect somatic health improvement among heroin addicts during OMT.</p

    Concentrations and radiative forcing of anthropogenic aerosols from 1750 to 2014 simulated with the Oslo CTM3 and CEDS emission inventory

    Get PDF
    We document the ability of the new-generation Oslo chemistry-transport model, Oslo CTM3, to accurately simulate present-day aerosol distributions. The model is then used with the new Community Emission Data System (CEDS) historical emission inventory to provide updated time series of anthropogenic aerosol concentrations and consequent direct radiative forcing (RFari) from 1750 to 2014.Overall, Oslo CTM3 performs well compared with measurements of surface concentrations and remotely sensed aerosol optical depth. Concentrations are underestimated in Asia, but the higher emissions in CEDS than previous inventories result in improvements compared to observations. The treatment of black carbon (BC) scavenging in Oslo CTM3 gives better agreement with observed vertical BC profiles relative to the predecessor Oslo CTM2. However, Arctic wintertime BC concentrations remain underestimated, and a range of sensitivity tests indicate that better physical understanding of processes associated with atmospheric BC processing is required to simultaneously reproduce both the observed features. Uncertainties in model input data, resolution, and scavenging affect the distribution of all aerosols species, especially at high latitudes and altitudes. However, we find no evidence of consistently better model performance across all observables and regions in the sensitivity tests than in the baseline configuration.Using CEDS, we estimate a net RFari in 2014 relative to 1750 of −0.17&thinsp;W&thinsp;m−2, significantly weaker than the IPCC AR5 2011–1750 estimate. Differences are attributable to several factors, including stronger absorption by organic aerosol, updated parameterization of BC absorption, and reduced sulfate cooling. The trend towards a weaker RFari over recent years is more pronounced than in the IPCC AR5, illustrating the importance of capturing recent regional emission changes.</p

    An AeroCom assessment of black carbon in Arctic snow and sea ice

    Get PDF
    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are −4.4 (−13.2 to +10.7) ng g−1 for an earlier phase of AeroCom models (phase I), and +4.1 (−13.0 to +21.4) ng g−1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g−1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m−2 and 0.18 (0.06–0.28) W m−2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m−2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic
    • …
    corecore