9,420 research outputs found
A Trouble with Ho\v{r}ava-Lifshitz Gravity
We study the structure of the phase space in Ho\v{r}ava-Lifshitz theory. With
the constraints derived from the action, the phase space is described by five
fields, thus there is a lack of canonical structure. The Poisson brackets of
the Hamiltonian density do not form a closed structure, resulting in many new
constraints. Taking these new constraints into account, it appears that there
is no degree of freedom left, or the phase space is reduced to one with an odd
number of fields.Comment: 12 pages, some discussions, comments and references added, JHEP styl
Critical Nature of Non-Fermi Liquid in Spin 3/2 Multipolar Kondo Model
A multipolar Kondo model of an impurity spin S_I=3/2 interacting with
conduction electrons with spin s_c=3/2 is investigated using boundary conformal
field theory. A two-channel Kondo (2CK) -like non-Fermi liquid (NFL) under the
particle-hole symmetry is derived explicitly using a ``superspin absorption''
in the sector of a hidden symmetry, SO(5). We discuss the difference between
the usual spin-1/2 2CK NFL fixed point and the present one. In particular, we
find that, unlike the usual 2CK model, the low temperature impurity specific
heat is proportional to temperature.Comment: 4 pages, 2 figure
Method for Generating Long-Range Correlations for Large Systems
We propose a new method to generate a sequence of random numbers with
long-range power-law correlations that overcomes known difficulties associated
with large systems. The new method presents an improvement on the commonly-used
methods. We apply the algorithm to generate enhanced diffusion, isotropic and
anisotropic self-affine surfaces, and isotropic and anisotropic correlated
percolation.Comment: 4 pages, REVTEX, figures available upon request from
[email protected]
A Novel Composite Hydrogen Sensor Based on Pd Nanoclusters/TiO\u3csub\u3e2\u3c/sub\u3e Nanotube Arrays
A novel composite hydrogen sensor, consisting of Pd nanoclusters/TiO2 nanotube arrays, was fabricated and evaluated at room temperature. The Pd nanoclusters layer was deposited on top surface of the nanotube arrays by using a direct current (DC) magnetron sputtering method. Resistive response of the composite sensors to 0.5% hydrogen was measured. Experimental results indicated that the Pd nanoclusters can quickly and continually form or break multiple passages by absorbing or desorbing hydrogen, so that the composite hydrogen sensors have promising hydrogen sensitivity at room temperature
Superconducting and normal-state interlayer-exchange-coupling in LaSrMnO-YBaCuO_{0.67}_{0.33}{3}$ epitaxial trilayers
The issue of interlayer exchange coupling in magnetic multilayers with
superconducting (SC) spacer is addressed in LaSrMnO
(LSMO) - YBaCuO (YBCO) - LaSrMnO
(LSMO) epitaxial trilayers through resistivity, ac-susceptibility and
magnetization measurements. The ferromagnetic (FM) LSMO layers possessing
in-plane magnetization suppress the critical temperature (T of the
c-axis oriented YBCO thin film spacer. The superconducting order, however,
survives even in very thin layers (thickness d 50 {\AA}, 4
unit cells) at T 25 K. A predominantly antiferromagnetic (AF) exchange
coupling between the moments of the LSMO layers at fields 200 Oe is seen in
the normal as well as the superconducting states of the YBCO spacer. The
exchange energy J ( 0.08 erg/cm at 150 K for d = 75
{\AA}) grows on cooling down to T, followed by truncation of this growth
on entering the superconducting state. The coupling energy J at a fixed
temperature drops exponentially with the thickness of the YBCO layer. The
temperature and d dependencies of this primarily non-oscillatory J
are consistent with the coupling theories for systems in which transport is
controlled by tunneling. The truncation of the monotonic T dependence of
J below T suggests inhibition of single electron tunneling across
the CuO planes as the in-plane gap parameter acquires a non-zero value.Comment: Accepted for publication in Phys. Rev.
Magnetically Robust Non-Fermi Liquid Behavior in Heavy Fermion Systems with f^2-Configuration: Competition between Crystalline-Electric-Field and Kondo-Yosida Singlets
We study a magnetic field effect on the Non-Fermi Liquid (NFL) which arises
around the quantum critical point (QCP) due to the competition between the
f^2-crystalline-electric-field singlet and the Kondo-Yosida singlet states by
using the numerical renormalization ground method. We show the characteristic
temperature T_F^*, corresponding to a peak of a specific heat, is not affected
by the magnetic field up to H_z^* which is determined by the distance from the
QCP or characteristic energy scales of each singlet states. As a result, in the
vicinity of QCP, there are parameter regions where the NFL is robust against
the magnetic field, at an observable temperature range T > T_F^*, up to H_z^*
which is far larger than T_F^* and less than min(T_{K2}, $Delta).Comment: 8 pages, 9 figur
Doping dependence of phonon and quasiparticle heat transport of pure and Dy-doped Bi_2Sr_2CaCu_2O_{8+\delta} single crystals
The temperature and magnetic-field (H) dependences of thermal conductivity
(\kappa) of Bi_2Sr_2CaCu_2O_{8+\delta} (Bi2212) are systematically measured for
a broad doping range by using both pure Bi2212 single crystals with tuned
oxygen contents and Bi_2Sr_2Ca_{1-x}Dy_xCu_2O_{8+\delta} (Dy-Bi2212) single
crystals with different Dy contents x. In the underdoped samples, the
quasiparticle (QP) peak below T_c is strongly suppressed, indicating strong QP
scattering by impurities or oxygen defects, whereas the phonon conductivity is
enhanced in moderately Dy-doped samples and a phonon peak at 10 K is observed
for the first time in Bi2212 system, which means Dy^{3+} ions not only
introduce the impurities or point defects but also stabilize the crystal
lattice. The subkelvin data show that the QP heat conductivity gradually
decreases upon lowering the hole doping level. The magnetic-field dependence of
\kappa at temperature above 5 K is mainly due to the QP scattering off
vortices. While the underdoped pure Bi2212 show very weak field dependence of
\kappa, the Dy-doped samples present an additional "dip"-like term of \kappa(H)
at low field, which is discussed to be related to the phonon scattering by free
spins of Dy^{3+} ions. For non-superconducting Dy-Bi2212 samples with x \simeq
0.50, an interesting "plateau" feature shows up in the low-T \kappa(H)
isotherms with characteristic field at 1 -- 2 T, for which we discuss the
possible revlevance of magnon excitations.Comment: 11 pages, 11 figures, accepted for publication in Phys. Rev.
Quantitative Analysis of Bloggers Collective Behavior Powered by Emotions
Large-scale data resulting from users online interactions provide the
ultimate source of information to study emergent social phenomena on the Web.
From individual actions of users to observable collective behaviors, different
mechanisms involving emotions expressed in the posted text play a role. Here we
combine approaches of statistical physics with machine-learning methods of text
analysis to study emergence of the emotional behavior among Web users. Mapping
the high-resolution data from digg.com onto bipartite network of users and
their comments onto posted stories, we identify user communities centered
around certain popular posts and determine emotional contents of the related
comments by the emotion-classifier developed for this type of texts. Applied
over different time periods, this framework reveals strong correlations between
the excess of negative emotions and the evolution of communities. We observe
avalanches of emotional comments exhibiting significant self-organized critical
behavior and temporal correlations. To explore robustness of these critical
states, we design a network automaton model on realistic network connections
and several control parameters, which can be inferred from the dataset.
Dissemination of emotions by a small fraction of very active users appears to
critically tune the collective states
Modeling Cluster Production at the AGS
Deuteron coalescence, during relativistic nucleus-nucleus collisions, is
carried out in a model incorporating a minimal quantal treatment of the
formation of the cluster from its individual nucleons by evaluating the overlap
of intial cascading nucleon wave packets with the final deuteron wave function.
In one approach the nucleon and deuteron center of mass wave packet sizes are
estimated dynamically for each coalescing pair using its past light-cone
history in the underlying cascade, a procedure which yields a parameter free
determination of the cluster yield. A modified version employing a global
estimate of the deuteron formation probability, is identical to a general
implementation of the Wigner function formalism but can differ from the most
frequent realisation of the latter. Comparison is made both with the extensive
existing E802 data for Si+Au at 14.6 GeV/c and with the Wigner formalism. A
globally consistent picture of the Si+Au measurements is achieved. In light of
the deuteron's evident fragility, information obtained from this analysis may
be useful in establishing freeze-out volumes and help in heralding the presence
of high-density phenomena in a baryon-rich environment.Comment: 31 pages REVTeX, 19 figures (4 oversized included as JPEG). For full
postscript figures (LARGE): contact [email protected]
Remnants of Initial Anisotropic High Energy Density Domains in Nucleus-Nucleus Collisions
Anisotropic high energy density domains may be formed at early stages of
ultrarelativistic heavy ion collisions, e.g. due to phase transition dynamics
or non-equilibrium phenomena like (mini-)jets. Here we investigate hadronic
observables resulting from an initially created anisotropic high energy density
domain. Based on our studies using a transport model we find that the initial
anisotropies are reflected in the freeze-out multiplicity distribution of both
pions and kaons due to secondary hadronic rescattering. The anisotropy appears
to be stronger for particles at high transverse momenta. The overall kaon
multiplicity increases with large fluctuations of local energy densities, while
no change has been found in the pion multiplicity.Comment: Submitted to PR
- …