13 research outputs found

    Avalanches in Breakdown and Fracture Processes

    Full text link
    We investigate the breakdown of disordered networks under the action of an increasing external---mechanical or electrical---force. We perform a mean-field analysis and estimate scaling exponents for the approach to the instability. By simulating two-dimensional models of electric breakdown and fracture we observe that the breakdown is preceded by avalanche events. The avalanches can be described by scaling laws, and the estimated values of the exponents are consistent with those found in mean-field theory. The breakdown point is characterized by a discontinuity in the macroscopic properties of the material, such as conductivity or elasticity, indicative of a first order transition. The scaling laws suggest an analogy with the behavior expected in spinodal nucleation.Comment: 15 pages, 12 figures, submitted to Phys. Rev. E, corrected typo in authors name, no changes to the pape

    Protein-S-S-Glutathione Mixed Disulfides as Models of Unfolded Protein

    Full text link
    Mixed disulfides between glutathione and the reduced forms of disulfide-bonded proteins were generated and characterized to explore their suitability as models of the unfolded state of newly-synthesized secretory proteins. RNase T-1 and alpha-lactalbumin were reduced and converted to mixed disulfide derivatives, named GS-RNase T-1 and GS-alpha-lactalbumin, in good yield; the molecular masses of the derivatives were confirmed by electrospray mass spectrometry. The intrinsic fluorescence of the derivatives and the binding of the hydrophobic fluorescent dye ANS were characteristic of fully unfolded proteins. Fluorescence studies and enzyme activity data indicated that GS-RNase T-1 could be refolded to a nativelike state at NaCl concentrations greater than 1.5 M, as was previously demonstrated for the reduced, carboxymethylated derivative of this protein. The [NaCl]-dependent folding/unfolding equilibrium for GS-RNase T-1 was reversible and could be influenced by urea. Fluorescence studies indicated that GS-alpha-lactalbumin showed a [NaCl]-dependent partial shift toward a more nativelike state, which was enhanced by the presence of Ca2+ ions. Both of the GS derivatives stimulated the ATPase activity of BiP, with apparent affinities in the range 0.1-1.0 mM. The results indicate that these GS-S-protein mixed disulfide derivatives are ideal model unfolded proteins that can be used as substrates for detailed studies on secretory protein folding in vitro and on the interactions between unfolded proteins and facilitators of protein folding
    corecore