250 research outputs found

    Spatio-temporal activation of caspase-8 in myeloid cells upon ischemic stroke

    Get PDF
    Ischemic stroke (caused by thrombosis, embolism or vasoconstriction) lead to the recruitment and activation of immune cells including resident microglia and infiltrating peripheral macrophages, which contribute to an inflammatory response involved in regulation of the neuronal damage. We showed earlier that upon pro-inflammatory stimuli, the orderly activation of caspase-8 and caspase-3/7 regulates microglia activation through a protein kinase C-δ dependent pathway. Here, we present in vivo evidence for the activation of caspase-8 and caspase-3 in microglia/macrophages in post-mortem tissue from human ischemic stroke subjects. Indeed, CD68-positive microglia/macrophages in the ischemic peri-infarct area exhibited significant expression of the cleaved and active form of caspase-8 and caspase-3. The temporal and spatial activation of caspase-8 was further investigated in a permanent middle cerebral artery occlusion mouse model of ischemic stroke. Increasing levels of active caspase-8 was found in Iba1-positive cells over time in the peri-infarct area, at 6, 24 and 48 h after artery occlusion. Analysis of post-mortem brain tissue from human subject who suffered two stroke events, referred as recent and old stroke, revealed that expression of cleaved caspase-8 and -3 in CD68-positive cells could only be found in the recent stroke area. Analysis of cleaved caspase-8 and -3 expressions in a panel of human stroke cases arranged upon days-after stroke and age-matched controls suggested that the expression of these caspases correlated with the time of onset of stroke. Collectively, these data illustrate the temporal and spatial activation of caspase-8 and -3 in microglia/macrophages occurring upon ischemic stroke and suggest that the expression of these caspases could be used in neuropathological diagnostic work.J.R. is supported by a doctoral fellowship from the Karolinska Institutet Foundations; M.A.B. is supported by a postdoctoral fellowship from Swedish Research Council. This work has been supported by grants from the Swedish Research Council, the Swedish Brain Foundation, the Parkinson foundation in Sweden, the Spanish MINECO/FEDER/UE and the Karolinska Institutet Foundations

    Suppression of rice methane emission by sulfate deposition in simulated acid rain

    Get PDF
    Sulfate in acid rain is known to suppress methane (CH4) emissions from natural freshwater wetlands. Here we examine the possibility that CH4 emissions from rice agriculture may be similarly affected by acid rain, a major and increasing pollution problem in Asia. Our findings suggest that acid rain rates of SO2-4 deposition may help to reduce CH4 emissions from rice agriculture. Emissions from rice plants treated with simulated acid rain at levels of SO2-4 consistent with the range of deposition in Asia were reduced by 24% during the grain filling and ripening stage of the rice season which accounts for 50% of the overall CH4 that is normally emitted in a rice season. A single application of SO2-4 at a comparable level reduced CH4 emission by 43%. We hypothesize that the reduction in CH4 emission may be due to a combination of effects. The first mechanism is that the low rates of SO2-4 may be sufficient to boost yields of rice and, in so doing, may cause a reduction in root exudates to the rhizosphere, a key substrate source for methanogenesis. Decreasing a major substrate source for methanogens is also likely to intensify competition with sulfate-reducing microorganisms for whom prior SO2-4 limitation had been lifted by the simulated acid rain S deposition

    Genetic Control of the Variable Innate Immune Response to Asymptomatic Bacteriuria

    Get PDF
    The severity of urinary tract infection (UTI) reflects the quality and magnitude of the host response. While strong local and systemic innate immune activation occurs in patients with acute pyelonephritis, the response to asymptomatic bacteriuria (ABU) is low. The immune response repertoire in ABU has not been characterized, due to the inherent problem to distinguish bacterial differences from host-determined variation. In this study, we investigated the host response to ABU and genetic variants affecting innate immune signaling and UTI susceptibility. Patients were subjected to therapeutic urinary tract inoculation with E. coli 83972 to ensure that they were exposed to the same E. coli strain. The innate immune response repertoire was characterized in urine samples, collected from each patient before and after inoculation with bacteria or PBS, if during the placebo arm of the study. Long-term E. coli 83972 ABU was established in 23 participants, who were followed for up to twelve months and the innate immune response was quantified in 233 urine samples. Neutrophil numbers increased in all but two patients and in an extended urine cytokine/chemokine analysis (31 proteins), the chemoattractants IL-8 and GRO-α, RANTES, Eotaxin-1 and MCP-1, the T cell chemoattractant and antibacterial peptide IP-10, inflammatory regulators IL-1-α and sIL-1RA and the T lymphocyte/dendritic cell product sIL-2Rα were detected and variably increased, compared to sterile samples. IL-6, which is associated with symptomatic UTI, remained low and numerous specific immune mediators were not detected. The patients were also genotyped for UTI-associated IRF3 and TLR4 promoter polymorphisms. Patients with ABU associated TLR4 polymorphisms had low neutrophil numbers, IL-6, IP-10, MCP-1 and sIL-2Rα concentrations. Patients with the ABU-associated IRF3 genotype had lower neutrophils, IL-6 and MCP-1 responses than the remaining group. The results suggest that the host-specific, low immune response to ABU mainly includes innate immune mediators and that host genetics directly influence the magnitude of this response
    corecore