2,810 research outputs found

    A Numerical Renormalization Group approach to Green's Functions for Quantum Impurity Models

    Full text link
    We present a novel technique for the calculation of dynamical correlation functions of quantum impurity systems in equilibrium with Wilson's numerical renormalization group. Our formulation is based on a complete basis set of the Wilson chain. In contrast to all previous methods, it does not suffer from overcounting of excitation. By construction, it always fulfills sum rules for spectral functions. Furthermore, it accurately reproduces local thermodynamic expectation values, such as occupancy and magnetization, obtained directly from the numerical renormalization group calculations.Comment: 13 pages, 7 figur

    Expansion of Indecency Regulation: Presented by the Federalist Society\u27s Telecommunications Practice Group

    Get PDF
    This is a transcript of the November 10, 2005, panel discussion at the National Lawyer\u27s Convention presented by the Federalist Society\u27s Telecommunications Practice Group. The panelists debate and discuss the Federal Communications Commission\u27s ( FCC ) regulation of indecent content

    Importance of age and postimplantation experience on speech perception measures in children with sequential bilateral cochlear implants.

    Get PDF
    and þCochlear Americas, Englewood, Colorado, U.S.A. Objectives: Clinical trials in which children received bilateral cochlear implants in sequential operations were conducted to analyze the extent to which bilateral implantation offers benefits on a number of measures. The present investigation was particularly focused on measuring the effects of age at implantation and experience after activation of the second implant on speech perception performance. Study Design: Thirty children aged 3 to 13 years were recipients of 2 cochlear implants, received in sequential operations, a minimum of 6 months apart. All children received their first implant before 5 years of age and had acquired speech perception capabilities with the first device. They were divided into 3 age groups on the basis of age at time of second ear implantation: Group I, 3 to 5 years; Group II, 5.1 to 8 years; and Group III, 8.1 to 13 years. Speech perception measures in quiet included the Multisyllabic Lexical Neighborhood Test (MLNT) for Group I, the Lexical Neighborhood Test (LNT) for Groups II and III, and the Hearing In Noise Test for Children (HINT-C) sentences in quiet for Group III. Speech perception in noise was assessed using the Children_s Realistic Intelligibility and Speech Perception (CRISP) test. Testing was performed preoperatively and again postactivation of the second implant at 3, 6, and 12 months (CRISP at 3 and 9 mo) in both the unilateral and bilateral conditions in a repeatedmeasures study design. Two-way repeated-measures analysis of variance was used to analyze statistical significance among device configurations and performance over time. Setting: US Multicenter. Results: Results for speech perception in quiet show that children implanted sequentially acquire open-set speech perception in the second ear relatively quickly (within 6 mo). However, children younger than 8 years do so more rapidly and to a higher level of speech perception ability at 12 months than older children (mean second ear MLNT/LNT scores at 12 months: Group I, 83.9%; range, 71Y96%; Group II, 59.5%; range, 40Y88%; Group III, 32%; range, 12Y56%). The second-ear mean HINT-C score for Group III children remained far less than that of the first ear even after 12 months of device use (44 versus 89%; t, 6.48; p G 0.001; critical value, 0.025). Speech intelligibility for spondees in noise was significantly better under bilateral conditions than with either ear alone when all children were analyzed as a single group and for Group III children. At the 9-month test interval, performance in the bilateral configuration was significantly better for all noise conditions (13.2% better for noise at first cochlear implant, 6.8% better for the noise front and noise at second cochlear implant conditions, t = 2.32, p = 0.024, critical level = 0.05 for noise front; t = 3.75, p G 0.0001, critical level = 0.05 for noise at first implant; t = 2.73, p = 0.008, critical level = 0.05 for noise at second implant side). The bilateral benefit in noise increased with time from 3 to 9 months after activation of the second implant. This bilateral advantage is greatest when noise is directed toward the first implanted ear, indicating that the head shadow effect is the most effective binaural mechanism. The bilateral condition produced small improvements in speech perception in quiet and for individual Group I and Group II patient results in noise that, in view of the relatively small number of subjects tested, do not reach statistical significance. Conclusion: Sequential bilateral cochlear implantation in children of diverse ages has the potential to improve speech perception abilities in the second implanted ear and to provide access to the use of binaural mechanisms such as the head shadow effect. The improvement unfolds over time and continues to grow during the 6 to 12 months after activation of the second implant. Younger children in this study achieved higher open-set speech perception scores in the second ear, but older children still demonstrate bilateral benefit in noise. Determining the long-term impact and cost-effectiveness that results from such potential capabilities in bilaterally implanted children requires additional study with larger groups of subjects and more prolonged monitoring

    Importance of age and postimplantation experience on speech perception measures in children with sequential bilateral cochlear implants.

    Get PDF
    and þCochlear Americas, Englewood, Colorado, U.S.A. Objectives: Clinical trials in which children received bilateral cochlear implants in sequential operations were conducted to analyze the extent to which bilateral implantation offers benefits on a number of measures. The present investigation was particularly focused on measuring the effects of age at implantation and experience after activation of the second implant on speech perception performance. Study Design: Thirty children aged 3 to 13 years were recipients of 2 cochlear implants, received in sequential operations, a minimum of 6 months apart. All children received their first implant before 5 years of age and had acquired speech perception capabilities with the first device. They were divided into 3 age groups on the basis of age at time of second ear implantation: Group I, 3 to 5 years; Group II, 5.1 to 8 years; and Group III, 8.1 to 13 years. Speech perception measures in quiet included the Multisyllabic Lexical Neighborhood Test (MLNT) for Group I, the Lexical Neighborhood Test (LNT) for Groups II and III, and the Hearing In Noise Test for Children (HINT-C) sentences in quiet for Group III. Speech perception in noise was assessed using the Children_s Realistic Intelligibility and Speech Perception (CRISP) test. Testing was performed preoperatively and again postactivation of the second implant at 3, 6, and 12 months (CRISP at 3 and 9 mo) in both the unilateral and bilateral conditions in a repeatedmeasures study design. Two-way repeated-measures analysis of variance was used to analyze statistical significance among device configurations and performance over time. Setting: US Multicenter. Results: Results for speech perception in quiet show that children implanted sequentially acquire open-set speech perception in the second ear relatively quickly (within 6 mo). However, children younger than 8 years do so more rapidly and to a higher level of speech perception ability at 12 months than older children (mean second ear MLNT/LNT scores at 12 months: Group I, 83.9%; range, 71Y96%; Group II, 59.5%; range, 40Y88%; Group III, 32%; range, 12Y56%). The second-ear mean HINT-C score for Group III children remained far less than that of the first ear even after 12 months of device use (44 versus 89%; t, 6.48; p G 0.001; critical value, 0.025). Speech intelligibility for spondees in noise was significantly better under bilateral conditions than with either ear alone when all children were analyzed as a single group and for Group III children. At the 9-month test interval, performance in the bilateral configuration was significantly better for all noise conditions (13.2% better for noise at first cochlear implant, 6.8% better for the noise front and noise at second cochlear implant conditions, t = 2.32, p = 0.024, critical level = 0.05 for noise front; t = 3.75, p G 0.0001, critical level = 0.05 for noise at first implant; t = 2.73, p = 0.008, critical level = 0.05 for noise at second implant side). The bilateral benefit in noise increased with time from 3 to 9 months after activation of the second implant. This bilateral advantage is greatest when noise is directed toward the first implanted ear, indicating that the head shadow effect is the most effective binaural mechanism. The bilateral condition produced small improvements in speech perception in quiet and for individual Group I and Group II patient results in noise that, in view of the relatively small number of subjects tested, do not reach statistical significance. Conclusion: Sequential bilateral cochlear implantation in children of diverse ages has the potential to improve speech perception abilities in the second implanted ear and to provide access to the use of binaural mechanisms such as the head shadow effect. The improvement unfolds over time and continues to grow during the 6 to 12 months after activation of the second implant. Younger children in this study achieved higher open-set speech perception scores in the second ear, but older children still demonstrate bilateral benefit in noise. Determining the long-term impact and cost-effectiveness that results from such potential capabilities in bilaterally implanted children requires additional study with larger groups of subjects and more prolonged monitoring

    Immunization with SARS Coronavirus Vaccines Leads to Pulmonary Immunopathology on Challenge with the SARS Virus

    Get PDF
    BACKGROUND:Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated. Evaluations of an inactivated whole virus vaccine in ferrets and nonhuman primates and a virus-like-particle vaccine in mice induced protection against infection but challenged animals exhibited an immunopathologic-type lung disease. DESIGN:Four candidate vaccines for humans with or without alum adjuvant were evaluated in a mouse model of SARS, a VLP vaccine, the vaccine given to ferrets and NHP, another whole virus vaccine and an rDNA-produced S protein. Balb/c or C57BL/6 mice were vaccinated i.m. on day 0 and 28 and sacrificed for serum antibody measurements or challenged with live virus on day 56. On day 58, challenged mice were sacrificed and lungs obtained for virus and histopathology. RESULTS:All vaccines induced serum neutralizing antibody with increasing dosages and/or alum significantly increasing responses. Significant reductions of SARS-CoV two days after challenge was seen for all vaccines and prior live SARS-CoV. All mice exhibited histopathologic changes in lungs two days after challenge including all animals vaccinated (Balb/C and C57BL/6) or given live virus, influenza vaccine, or PBS suggesting infection occurred in all. Histopathology seen in animals given one of the SARS-CoV vaccines was uniformly a Th2-type immunopathology with prominent eosinophil infiltration, confirmed with special eosinophil stains. The pathologic changes seen in all control groups lacked the eosinophil prominence. CONCLUSIONS:These SARS-CoV vaccines all induced antibody and protection against infection with SARS-CoV. However, challenge of mice given any of the vaccines led to occurrence of Th2-type immunopathology suggesting hypersensitivity to SARS-CoV components was induced. Caution in proceeding to application of a SARS-CoV vaccine in humans is indicated
    • …
    corecore