1,112 research outputs found

    Evidence of Program Quality and Youth Outcomes in the DYCD Out-of-School Time Initiative: Report on the Initiative's First Three Years

    Get PDF
    Examines New York City's progress in improving out-of-school-time program quality and serving more children and youth, participants' and parents' overall satisfaction with quality and accessibility, and links between programming, quality, and benefits

    Pulsed versus DC I-V characteristics of resistive manganites

    Full text link
    We report on pulsed and DC I-V characteristics of polycrystalline samples of three charge-ordered manganites, Pr_{2/3}Ca_{1/3}MnO_3, Pr_{1/2}Ca_{1/2}MnO_3, Bi_{1/2}Sr_{1/2}MnO_3 and of a double-perovskite Sr_2MnReO_6, in a temperature range where their ohmic resistivity obeys the Efros-Shklovskii variable range hopping relation. For all samples, the DC I(V) exhibits at high currents negative differential resistance and hysteresis, which mask a perfectly ohmic or a moderately nonohmic conductivity obtained by pulsed measurements. This demonstrates that the widely used DC I-V measurements are usually misleading.Comment: 6 pages, 4 figures. Accepted for publication to AP

    Inter-grain tunneling in the half-metallic double-perovskites Sr2_2BB'O6_6 (BB'-- FeMo, FeRe, CrMo, CrW, CrRe

    Full text link
    The zero-field conductivities (σ\sigma) of the polycrystaline title materials, are governed by inter-grain transport. In the majority of cases their σ\sigma(T) can be described by the "fluctuation induced tunneling" model. Analysis of the results in terms of this model reveals two remarkable features: 1. For \emph{all} Sr2_2FeMoO6_6 samples of various microstructures, the tunneling constant (barrier width ×\times inverse decay-length of the wave-function) is ∼\sim 2, indicating the existence of an intrinsic insulating boundary layer with a well defined electronic (and magnetic) structure. 2. The tunneling constant for \emph{all} cold-pressed samples decreases linearly with increasing magnetic-moment/formula-unit.Comment: 10 pages, 2 tables, 3 figure

    Diffusion mechanisms of localised knots along a polymer

    Full text link
    We consider the diffusive motion of a localized knot along a linear polymer chain. In particular, we derive the mean diffusion time of the knot before it escapes from the chain once it gets close to one of the chain ends. Self-reptation of the entire chain between either end and the knot position, during which the knot is provided with free volume, leads to an L^3 scaling of diffusion time; for sufficiently long chains, subdiffusion will enhance this time even more. Conversely, we propose local ``breathing'', i.e., local conformational rearrangement inside the knot region (KR) and its immediate neighbourhood, as additional mechanism. The contribution of KR-breathing to the diffusion time scales only quadratically, L^2, speeding up the knot escape considerably and guaranteeing finite knot mobility even for very long chains.Comment: 7 pages, 2 figures. Accepted to Europhys. Let
    • …
    corecore