450 research outputs found
Virtual-crystal approximation that works: Locating a composition phase boundary in Pb(Zr_{1-x}Ti_3)O_3
We present a new method for modeling disordered solid solutions, based on the
virtual crystal approximation (VCA). The VCA is a tractable way of studying
configurationally disordered systems; traditionally, the potentials which
represent atoms of two or more elements are averaged into a composite atomic
potential. We have overcome significant shortcomings of the standard VCA by
developing a potential which yields averaged atomic properties. We perform the
VCA on a ferroelectric oxide, determining the energy differences between the
high-temperature rhombohedral, low-temperature rhombohedral and tetragonal
phases of Pb(Zr_{1-x}Ti_x)O_3 at x=0.5 and comparing these results to
superlattice calculations and experiment. We then use our new method to
determine the preferred structural phase at x=0.4. We find that the
low-temperature rhombohedral phase becomes the ground state at x=0.4, in
agreement with experimental findings.Comment: 5 pages, no figure
Amphiphilic Polyanhydride Nanoparticles Stabilize \u3ci\u3eBacillus anthracis\u3c/i\u3e Protective Antigen
Advancements towards an improved vaccine against Bacillus anthracis, the causative agent of anthrax, have focused on formulations composed of the protective antigen (PA) adsorbed to aluminum hydroxide. However, due to the labile nature of PA, antigen stability is a primary concern for vaccine development. Thus, there is a need for a delivery system capable of preserving the immunogenicity of PA through all the steps of vaccine fabrication, storage, and administration. In this work, we demonstrate that biodegradable amphiphilic polyanhydride nanoparticles, which have previously been shown to provide controlled antigen delivery, antigen stability, immune modulation, and protection in a single dose against a pathogenic challenge, can stabilize and release functional PA. These nanoparticles demonstrated polymer hydrophobicity-dependent preservation of the biological function of PA upon encapsulation, storage (over extended times and elevated temperatures), and release. Specifically, fabrication of amphiphilic polyanhydride nanoparticles composed of 1,6-bis(p-carboxyphenoxy)hexane and 1,8-bis(p-carboxyphenoxy)-3,6- dioxaoctane best preserved PA functionality. These studies demonstrate the versatility and superiority of amphiphilic nanoparticles as vaccine delivery vehicles suitable for long-term storage
Usability Testing of Two Ambulatory EHR Navigators
Despite widespread electronic health record (EHR) adoption, poor EHR system usability continues to be a significant barrier to effective system use for end users. One key to addressing usability problems is to employ user testing and user-centered design
First-principles study of (BiScO3){1-x}-(PbTiO3){x} piezoelectric alloys
We report a first-principles study of a class of (BiScO3)_{1-x}-(PbTiO3)_x
(BS-PT) alloys recently proposed by Eitel et al. as promising materials for
piezoelectric actuator applications. We show that (i) BS-PT displays very large
structural distortions and polarizations at the morphotropic phase boundary
(MPB) (we obtain a c/a of ~1.05-1.08 and P_tet of ~1.1 C/m^2); (ii) the
ferroelectric and piezoelectric properties of BS-PT are dominated by the onset
of hybridization between Bi/Pb-6p and O-2p orbitals, a mechanism that is
enhanced upon substitution of Pb by Bi; and (iii) the piezoelectric responses
of BS-PT and Pb(Zr_{1-x}Ti_x)O3 (PZT) at the MPB are comparable, at least as
far as the computed values of the piezoelectric coefficient d_15 are concerned.
While our results are generally consistent with experiment, they also suggest
that certain intrinsic properties of BS-PT may be even better than has been
indicated by experiments to date. We also discuss results for PZT that
demonstrate the prominent role played by Pb displacements in its piezoelectric
properties.Comment: 6 pages, with 3 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/ji_bi/index.htm
Subgingival Microbiome Colonization and Cytokine Production during Early Dental Implant Healing
Little is known about longitudinal development of the peri-implant subgingival microbiome and cytokine production as a new sulcus forms after dental implant placement. Therefore, the purpose of this observational study was to evaluate simultaneous longitudinal changes in the oral microbiome and cytokine production in the developing peri-implant sulcus compared to control natural teeth. Four and 12 weeks after implant placement and abutment connection, a dental implant and a natural tooth were sampled in 25 patients for subgingival plaque and gingival crevicular fluid (GCF [around teeth] and peri-implant crevicular fluid [PICF] around implants). DNA from plaque samples was extracted and sequenced using Illumina-based 16S rRNA sequencing. GCF and PICF samples were analyzed using a customized Milliplex human cytokine and chemokine magnetic bead panel. Beta diversity analysis revealed that natural teeth and implants had similar subgingival microbiomes, while teeth had greater alpha diversity than implants. At the genus level, however, few differences were noted between teeth and dental implants over 12 weeks. Specifically, Actinomyces and Selenomonas were significantly elevated around teeth versus dental implants at both 4 weeks and 12 weeks, while Corynebacterium and Campylobacter were significantly elevated only at 4 weeks around teeth. The only difference between PICF and GCF biomarkers was significantly elevated granulocyte-macrophage colony-stimulating factor levels around teeth versus dental implants at the 4-week visit. The subgingival microbiome and cytokine production were similar between teeth and implants during early healing, suggesting that these profiles are driven by the patient following dental implant placement and are not determined by anatomical niche
d-wave to s-wave to normal metal transitions in disordered superconductors
We study suppression of superconductivity by disorder in d-wave
superconductors, and predict the existence of (at least) two sequential low
temperature transitions as a function of increasing disorder: a d -wave to
-wave, and then an s-wave to metal transition. This is a universal property of
the system which is independent of the sign of the interaction constant in the
s-channe
Lattice instabilities of PbZrO3/PbTiO3 [1:1] superlattices from first principles
Ab initio phonon calculations for the nonpolar reference structures of the
(001), (110), and (111) PbZrO_3/PbTiO_3 [1:1] superlattices are presented. The
unstable polar modes in the tetragonal (001) and (110) structures are confined
in either the Ti- or the Zr-centered layers and display two-mode behavior,
while in the cubic (111) case one-mode behavior is observed. Instabilities with
pure oxygen character are observed in all three structures. The implications
for the ferroelectric behavior and related properties are discussed.Comment: 12 pages, 2 figures, 7 tables, submitted to PR
A Geometric Formulation of Quantum Stress Fields
We present a derivation of the stress field for an interacting quantum system
within the framework of local density functional theory. The formulation is
geometric in nature and exploits the relationship between the strain tensor
field and Riemannian metric tensor field. Within this formulation, we
demonstrate that the stress field is unique up to a single ambiguous parameter.
The ambiguity is due to the non-unique dependence of the kinetic energy on the
metric tensor. To illustrate this formalism, we compute the pressure field for
two phases of solid molecular hydrogen. Furthermore, we demonstrate that
qualitative results obtained by interpreting the hydrogen pressure field are
not influenced by the presence of the kinetic ambiguity.Comment: 22 pages, 2 figures. Submitted to Physical Review B. This paper
supersedes cond-mat/000627
First-principles extrapolation method for accurate CO adsorption energies on metal surfaces
We show that a simple first-principles correction based on the difference
between the singlet-triplet CO excitation energy values obtained by DFT and
high-level quantum chemistry methods yields accurate CO adsorption properties
on a variety of metal surfaces.
We demonstrate a linear relationship between the CO adsorption energy and the
CO singlet-triplet splitting, similar to the linear dependence of CO adsorption
energy on the energy of the CO 2* orbital found recently {[Kresse {\em et
al.}, Physical Review B {\bf 68}, 073401 (2003)]}. Converged DFT calculations
underestimate the CO singlet-triplet excitation energy ,
whereas coupled-cluster and CI calculations reproduce the experimental . The dependence of on is used
to extrapolate for the top, bridge and hollow sites for the
(100) and (111) surfaces of Pt, Rh, Pd and Cu to the values that correspond to
the coupled-cluster and CI value. The correction
reproduces experimental adsorption site preference for all cases and obtains
in excellent agreement with experimental results.Comment: Table sent as table1.eps. 3 figure
A gut pathobiont synergizes with the microbiota to instigate inflammatory disease marked by immunoreactivity against other symbionts but not itself
Inflammatory bowel diseases (IBD) are likely driven by aberrant immune responses directed against the resident microbiota. Although IBD is commonly associated with a dysbiotic microbiota enriched in putative pathobionts, the etiological agents of IBD remain unknown. Using a pathobiont-induced intestinal inflammation model and a defined bacterial community, we provide new insights into the immune-microbiota interactions during disease. In this model system, the pathobiont Helicobacter bilis instigates disease following sub-pathological dextran sulfate sodium treatment. We show that H. bilis causes mild inflammation in mono-associated mice, but severe disease in the presence of a microbiota, demonstrating synergy between the pathobiont and microbiota in exacerbating pathology. Remarkably, inflammation depends on the presence of H. bilis, but is marked by a predominant Th17 response against specific members of the microbiota and not the pathobiont, even upon the removal of the most immune-dominant taxa. Neither increases in pathobiont burden nor unique changes in immune-targeted microbiota member abundances are observed during disease. Collectively, our findings demonstrate that a pathobiont instigates inflammation without being the primary target of a Th17 response or by altering the microbiota community structure. Moreover, our findings point toward monitoring pathobiont-induced changes in microbiota immune targeting as a new concept in IBD diagnotics
- …