87,280 research outputs found
Redistribution of phase fluctuations in a periodically driven cuprate superconductor
We study the thermally fluctuating state of a bi-layer cuprate superconductor
under the periodic action of a staggered field oscillating at optical
frequencies. This analysis distills essential elements of the recently
discovered phenomenon of light enhanced coherence in YBaCuO,
which was achieved by periodically driving infrared active apical oxygen
distortions. The effect of a staggered periodic perturbation is studied using a
Langevin and Fokker-Planck description of driven, coupled Josephson junctions,
which represent two neighboring pairs of layers and their two plasmons. In a
toy model including only two junctions, we demonstrate that the external
driving leads to a suppression of phase fluctuations of the low-energy plasmon,
an effect which is amplified via the resonance of the high energy plasmon. When
extending the modeling to the full layers, we find that this reduction becomes
far more pronounced, with a striking suppression of the low-energy
fluctuations, as visible in the power spectrum. We also find that this effect
acts onto the in-plane fluctuations, which are reduced on long length scales.
All these findings provide a physical framework to describe light control in
cuprates
: An Excellent Candidate of Tetraquarks
We analyze various possible interpretations of the narrow state
which lies 100 MeV above threshold. This interesting state
decays mainly into instead of . If this relative branching
ratio is further confirmed by other experimental groups, we point out that the
identification of either as a state or more generally
as a state in the representation is probably
problematic. Instead, such an anomalous decay pattern strongly indicates
is a four quark state in the representation
with the quark content . We discuss its
partners in the same multiplet, and the similar four-quark states composed of a
bottom quark . Experimental searches of other members
especially those exotic ones are strongly called for
Subleading corrections to parity-violating pion photoproduction
We compute the photon asymmetry Bγ for near threshold parity-violating (PV) pion photoproduction through subleading order. We show that subleading contributions involve a new combination of PV couplings not included in previous analyses of hadronic PV. We argue that existing constraints on the leading order contribution to Bγ—obtained from the PV γ-decay of 18F—suggest that the impact of the subleading contributions may be more significant than expected from naturalness arguments
Bloch Oscillation under a Bichromatic Laser: Quasi-Miniband Formation, Collapse, and Dynamical Delocalization and Localization
A novel DC and AC driving configuration is proposed for semiconductor
superlattices, in which the THz AC driving is provided by an intense
bichromatic cw laser. The two components of the laser, usually in the visible
light range, are near but not exactly resonant with interband Wannier-Stark
transitions, and their frequency difference equals the Wannier-Stark ladder
spacing. Multi-photon processes with the intermediate states in the conduction
(valence) band cause dynamical delocalization and localization of valence
(conduction) electrons, and the corresponding formation and collapse of the
quasi-minibands.Comment: 4 pages, 3 figure
Chiral Symmetry and the Parity-Violating Yukawa Coupling
We construct the complete SU(2) parity-violating (PV)
interaction Lagrangian with one derivative, and calculate the chiral
corrections to the PV Yukawa coupling constant through in the leading order of heavy baryon expansion. We
discuss the relationship between the renormalized \hpi, the measured value of
\hpi, and the corresponding quantity calculated microscopically from the
Standard Model four-quark PV interaction.Comment: RevTex, 26 pages + 5 PS figure
- …