87,280 research outputs found

    Redistribution of phase fluctuations in a periodically driven cuprate superconductor

    Full text link
    We study the thermally fluctuating state of a bi-layer cuprate superconductor under the periodic action of a staggered field oscillating at optical frequencies. This analysis distills essential elements of the recently discovered phenomenon of light enhanced coherence in YBa2_2Cu3_3O6+x_{6+x}, which was achieved by periodically driving infrared active apical oxygen distortions. The effect of a staggered periodic perturbation is studied using a Langevin and Fokker-Planck description of driven, coupled Josephson junctions, which represent two neighboring pairs of layers and their two plasmons. In a toy model including only two junctions, we demonstrate that the external driving leads to a suppression of phase fluctuations of the low-energy plasmon, an effect which is amplified via the resonance of the high energy plasmon. When extending the modeling to the full layers, we find that this reduction becomes far more pronounced, with a striking suppression of the low-energy fluctuations, as visible in the power spectrum. We also find that this effect acts onto the in-plane fluctuations, which are reduced on long length scales. All these findings provide a physical framework to describe light control in cuprates

    DsJ+(2632)D_{sJ}^+(2632): An Excellent Candidate of Tetraquarks

    Full text link
    We analyze various possible interpretations of the narrow state DsJ(2632)D_{sJ}(2632) which lies 100 MeV above threshold. This interesting state decays mainly into DsηD_s \eta instead of D0K+D^0 K^+. If this relative branching ratio is further confirmed by other experimental groups, we point out that the identification of DsJ(2632)D_{sJ}(2632) either as a csˉc\bar s state or more generally as a 3ˉ{\bf {\bar 3}} state in the SU(3)FSU(3)_F representation is probably problematic. Instead, such an anomalous decay pattern strongly indicates DsJ(2632)D_{sJ}(2632) is a four quark state in the SU(3)FSU(3)_F 15{\bf 15} representation with the quark content 122(dsdˉ+sddˉ+suuˉ+usuˉ2sssˉ)cˉ{1\over 2\sqrt{2}} (ds\bar{d}+sd\bar{d}+su\bar{u}+us\bar{u}-2ss\bar{s})\bar{c}. We discuss its partners in the same multiplet, and the similar four-quark states composed of a bottom quark BsJ0(5832)B_{sJ}^0(5832). Experimental searches of other members especially those exotic ones are strongly called for

    Subleading corrections to parity-violating pion photoproduction

    Get PDF
    We compute the photon asymmetry Bγ for near threshold parity-violating (PV) pion photoproduction through subleading order. We show that subleading contributions involve a new combination of PV couplings not included in previous analyses of hadronic PV. We argue that existing constraints on the leading order contribution to Bγ—obtained from the PV γ-decay of 18F—suggest that the impact of the subleading contributions may be more significant than expected from naturalness arguments

    Bloch Oscillation under a Bichromatic Laser: Quasi-Miniband Formation, Collapse, and Dynamical Delocalization and Localization

    Full text link
    A novel DC and AC driving configuration is proposed for semiconductor superlattices, in which the THz AC driving is provided by an intense bichromatic cw laser. The two components of the laser, usually in the visible light range, are near but not exactly resonant with interband Wannier-Stark transitions, and their frequency difference equals the Wannier-Stark ladder spacing. Multi-photon processes with the intermediate states in the conduction (valence) band cause dynamical delocalization and localization of valence (conduction) electrons, and the corresponding formation and collapse of the quasi-minibands.Comment: 4 pages, 3 figure

    Chiral Symmetry and the Parity-Violating NNπNN\pi Yukawa Coupling

    Get PDF
    We construct the complete SU(2) parity-violating (PV) π,N,Δ\pi, N, \Delta interaction Lagrangian with one derivative, and calculate the chiral corrections to the PV Yukawa NNπNN\pi coupling constant hπh_\pi through O(1/Λχ3){\cal O}(1/\Lambda_\chi^3) in the leading order of heavy baryon expansion. We discuss the relationship between the renormalized \hpi, the measured value of \hpi, and the corresponding quantity calculated microscopically from the Standard Model four-quark PV interaction.Comment: RevTex, 26 pages + 5 PS figure
    corecore