15 research outputs found

    Electrical resistance associated with the scattering of optically oriented electrons in n-GaAs

    Full text link
    In a bulk GaAs crystal, an unusual magnetoresistance effect, which takes place when a spin-polarized current flows through the sample, was detected. Under conditions of optical pumping of electron spins, an external magnetic field directed along the electric current and perpendicular to the oriented spins decreases the resistance of the material. The phenomenon is due to the spin-dependent scattering of electrons by neutral donors. It was found that the sign of the magnetoresistance does not depend on the sign of the exciting light circular polarization, the effect is even with respect to the sign of the spin polarization of the carriers, which indicates a correlation between the spins of optically oriented free electrons and electrons localized on donors.Comment: 9 pages, 4 figure

    Two-step model versus one-step model of the inter-polarization conversion and statistics of CdSe/ZnSe quantum dot elongations

    Full text link
    The magneto-optical inter-polarization conversions by a layer of quantum dots have been investigated. Various types of polarization response of the sample were observed as a function of external magnetic field and of the orientation of the sample. The full set of experimental dependences is analyzed in terms of a one-step and a two-step model of spin evolution. The angular distribution of the quantum dots over the directions of elongation in the plane of the sample is taken into account in terms of the two models, and the model predictions are compared with experimental observations

    Linear polarization of the photoluminescence of quantum wells

    Full text link
    The degree and orientation of the magnetic-field induced linear polarization of the photoluminescence from a wide range of heterostructures containing (Cd,Mn)Te quantum wells between (Cd,Mn,Mg)Te barriers has been studied as a function of detection photon energy, applied magnetic field strength and orientation in the quantum well plane. A theoretical description of this effect in terms of an in-plane deformation acting on the valence band states is presented and is verified by comparison with the experimental data. We attempted to identify clues to the microscopic origin of the valence band spin anisotropy and to the mechanisms which actually determine the linear polarization of the PL in the quantum wells subject to the in-plane magnetic field. The conclusions of the present paper apply in full measure to non-magnetic QWs as well as ensembles of disk-like QDs with shape and/or strain anisotropy.Comment: 21 pages, 10 figure

    Evidence of exchange interaction of localized carriers and transition metals in diluted II-VI nanostructures: ODMR study

    No full text
    Optically detected magnetic resonance study of (CdMn)Te/(CdMg)Te quantum wells allowed to reveal the formation of exchange-coupled complexes consisting of Mn ions and localized holes in quantum wells with excess hole concentration and the directional electron tunneling towards wider wells in multiple quantum well structures. The existence of a distribution of Mn-hole complexes that differ in a number of Mn ions interacting with a localized hole is justified. In colloidal cobalt doped ZnO nanocrystals, several nm in diameter, the interaction between the magnetic ions and the shallow donor electron in the confined system of ZnO quantum dots has been revealed. Direct evidence of interaction of Co ions with the interstitial Li shallow donor in the ZnO nanocrystal core and hyperfine coupling with 1H in the quantum dot shell have been demonstrated. (

    Evidence of exchange interaction of localized carriers and transition metals in diluted II-VI nanostructures : ODMR study

    No full text
    Optically detected magnetic resonance study of (CdMn)Te/(CdMg)Te quantum wells allowed to reveal the formation of exchange-coupled complexes consisting of Mn ions and localized holes in quantum wells with excess hole concentration and the directional electron tunneling towards wider wells in multiple quantum well structures. The existence of a distribution of Mn-hole complexes that differ in a number of Mn ions interacting with a localized hole is justified. In colloidal cobalt doped ZnO nanocrystals, several nm in diameter, the interaction between the magnetic ions and the shallow donor electron in the confined system of ZnO quantum dots has been revealed. Direct evidence of interaction of Co ions with the interstitial Li shallow donor in the ZnO nanocrystal core and hyperfine coupling with 1H in the quantum dot shell have been demonstrated. (
    corecore