29,151 research outputs found

    Design of magnetic traps for neutral atoms with vortices in type-II superconducting micro-structures

    Full text link
    We design magnetic traps for atoms based on the average magnetic field of vortices induced in a type-II superconducting thin film. This magnetic field is the critical ingredient of the demonstrated vortex-based atom traps, which operate without transport current. We use Bean's critical-state method to model the vortex field through mesoscopic supercurrents induced in the thin strip. The resulting inhomogeneous magnetic fields are studied in detail and compared to those generated by multiple normally-conducting wires with transport currents. Various vortex patterns can be obtained by programming different loading-field and transport current sequences. These variable magnetic fields are employed to make versatile trapping potentials.Comment: 11 pages, 14 figure

    Classifying LEP Data with Support Vector Algorithms

    Get PDF
    We have studied the application of different classification algorithms in the analysis of simulated high energy physics data. Whereas Neural Network algorithms have become a standard tool for data analysis, the performance of other classifiers such as Support Vector Machines has not yet been tested in this environment. We chose two different problems to compare the performance of a Support Vector Machine and a Neural Net trained with back-propagation: tagging events of the type e+e- -> ccbar and the identification of muons produced in multihadronic e+e- annihilation events.Comment: 7 pages, 4 figures, submitted to proceedings of AIHENP99, Crete, April 199

    On the Angular Dependence of the Radiative Gluon Spectrum

    Get PDF
    The induced momentum spectrum of soft gluons radiated from a high energy quark produced in and propagating through a QCD medium is reexamined in the BDMPS formalism. A mistake in our published work (Physical Review C60 (1999) 064902) is corrected. The correct dependence of the fractional induced loss R(θcone)R(\theta_{{\rm cone}}) as a universal function of the variable θcone2L3q^\theta^2_{{\rm cone}} L^3 \hat q where LL is the size of the medium and q^\hat q the transport coefficient is presented. We add the proof that the radiated gluon momentum spectrum derived in our formalism is equivalent with the one derived in the Zakharov-Wiedemann approach.Comment: LaTex, 5 pages, 1 figur

    SeaWiFS technical report series. Volume 5: Ocean optics protocols for SeaWiFS validation

    Get PDF
    Protocols are presented for measuring optical properties, and other environmental variables, to validate the radiometric performance of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and to develop and validate bio-optical algorithms for use with SeaWiFS data. The protocols are intended to establish foundations for a measurement strategy to verify the challenging SeaWiFS accuracy goals of 5 percent in water-leaving radiances and 35 percent in chlorophyll alpha concentration. The protocols first specify the variables which must be measured, and briefly review rationale. Subsequent chapters cover detailed protocols for instrument performance specifications, characterizing and calibration instruments, methods of making measurements in the field, and methods of data analysis. These protocols were developed at a workshop sponsored by the SeaWiFS Project Office (SPO) and held at the Naval Postgraduate School in Monterey, California (9-12 April, 1991). This report is the proceedings of that workshop, as interpreted and expanded by the authors and reviewed by workshop participants and other members of the bio-optical research community. The protocols are a first prescription to approach unprecedented measurement accuracies implied by the SeaWiFS goals, and research and development are needed to improve the state-of-the-art in specific areas. The protocols should be periodically revised to reflect technical advances during the SeaWiFS Project cycle

    Real-Time Operating System/360

    Get PDF
    RTOS has a cost savings advantage for real-time applications, such as those with random inputs requiring a flexible data routing facility, display systems simplified by a device independent interface language, and complex applications needing added storage protection and data queuing

    Near-field radiative heat transfer between macroscopic planar surfaces

    Get PDF
    Near-field radiative heat transfer allows heat to propagate across a small vacuum gap in quantities that are several orders of magnitude greater then the heat transfer by far-field, blackbody radiation. Although heat transfer via near-field effects has been discussed for many years, experimental verification of this theory has been very limited. We have measured the heat transfer between two macroscopic sapphire plates, finding an increase in agreement with expectations from theory. These experiments, conducted near 300 K, have measured the heat transfer as a function of separation over mm to μ\mum and as a function of temperature differences between 2.5 and 30 K. The experiments demonstrate that evanescence can be put to work to transfer heat from an object without actually touching it
    corecore