104,981 research outputs found

    Non-Thermal Production of WIMPs and the Sub-Galactic Structure of the Universe

    Get PDF
    There is increasing evidence that conventional cold dark matter (CDM) models lead to conflicts between observations and numerical simulations of dark matter halos on sub-galactic scales. Spergel and Steinhardt showed that if the CDM is strongly self-interacting, then the conflicts disappear. However, the assumption of strong self-interaction would rule out the favored candidates for CDM, namely weakly interacting massive particles (WIMPs), such as the neutralino. In this paper we propose a mechanism of non-thermal production of WIMPs and study its implications on the power spectrum. We find that the non-vanishing velocity of the WIMPs suppresses the power spectrum on small scales compared to what it obtained in the conventional CDM model. Our results show that, in this context, WIMPs as candidates for dark matter can work well both on large scales and on sub-galactic scales.Comment: 6 pages, 2 figures; typo corrected; to appear in PR

    On Kostant's partial order on hyperbolic elements

    Full text link
    We study Kostant's partial order on the elements of a semisimple Lie group in relations with the finite dimensional representations. In particular, we prove the converse statement of [3, Theorem 6.1] on hyperbolic elements.Comment: 7 page

    Agegraphic Chaplygin gas model of dark energy

    Full text link
    We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.Comment: 8 page

    Adhesion-induced lateral phase separation of multi-component membranes: the effect of repellers and confinement

    Full text link
    We present a theoretical study for adhesion-induced lateral phase separation for a membrane with short stickers, long stickers and repellers confined between two hard walls. The effects of confinement and repellers on lateral phase separation are investigated. We find that the critical potential depth of the stickers for lateral phase separation increases as the distance between the hard walls decreases. This suggests confinement-induced or force-induced mixing of stickers. We also find that stiff repellers tend to enhance, while soft repellers tend to suppress adhesion-induced lateral phase separation

    Duality and phase diagram of one dimensional transport

    Get PDF
    The observation of duality by Mukherji and Mishra in one dimensional transport problems has been used to develop a general approach to classify and characterize the steady state phase diagrams. The phase diagrams are determined by the zeros of a set of coarse-grained functions without the need of detailed knowledge of microscopic dynamics. In the process, a new class of nonequilibrium multicritical points has been identified.Comment: 6 pages, 2 figures (4 eps files

    Thermodynamics of interacting entropy-corrected holographic dark energy in a non-flat FRW universe

    Full text link
    A so-called "entropy-corrected holographic dark energy" (ECHDE), was recently proposed to explain the dark energy-dominated universe with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Using this new definition, we investigate its thermodynamical features including entropy and energy conservation. We describe the thermodynamical interpretation of the interaction between ECHDE and dark matter in a non-flat universe. We obtain a relation between the interaction term of the dark components and thermal fluctuation. Our study further generalizes the earlier works [M.R. Setare and E.C. Vagenas, Phys. Lett. B 666 (2008) 111; B. Wang et al., Phys. Lett. B 662 (2008) 1] in this direction.Comment: 14 pages, no figure, accepted by Int. J. Mod. Phys.
    corecore