92 research outputs found

    Ripening of silver nanoparticles on carbon nanotubes

    No full text
    An electrostatic-force-directed-assembly technique was used to coat multiwalled carbon nanotubes (MWCNTs) with aerosol Ag nanoparticles produced from a mini-arc plasma source. The deposition of Ag nanoparticles onto CNTs was confirmed by transmission electron microscopy (TEM), high-resolution TEM, scanning electron microscopy, and X-ray photoelectron spectroscopy. Ripening of Ag nanoparticles on CNTs was observed via successive TEM imaging after heating the nanoparticle-nanotube hybrid structures in air to three different temperatures ranging from 100 degrees C to 300 degrees C. With temperatures at and above 200 degrees C, the areal density of Ag nanoparticles decreased and the average particle size increased. In particular, migration and coalescence of Ag nanoparticles have been observed at this relatively low temperature, which suggests a van der Waals nanoparticle-nanotube interaction

    A Multicenter Analysis of Abnormal Chromosomal Microarray Findings in Congenital Heart Disease

    No full text
    Background Chromosomal microarray analysis (CMA) provides an opportunity to understand genetic causes of congenital heart disease (CHD). The methods for describing cardiac phenotypes in patients with CMA abnormalities have been inconsistent, which may complicate clinical interpretation of abnormal testing results and hinder a more complete understanding of genotype–phenotype relationships. Methods and Results Patients with CHD and abnormal clinical CMA were accrued from 9 pediatric cardiac centers. Highly detailed cardiac phenotypes were systematically classified and analyzed for their association with CMA abnormality. Hierarchical classification of each patient into 1 CHD category facilitated broad analyses. Inclusive classification allowing multiple CHD types per patient provided sensitive descriptions. In 1363 registry patients, 28% had genomic disorders with well‐recognized CHD association, 67% had clinically reported copy number variants (CNVs) with rare or no prior CHD association, and 5% had regions of homozygosity without CNV. Hierarchical classification identified expected CHD categories in genomic disorders, as well as uncharacteristic CHDs. Inclusive phenotyping provided sensitive descriptions of patients with multiple CHD types, which occurred commonly. Among CNVs with rare or no prior CHD association, submicroscopic CNVs were enriched for more complex types of CHD compared with large CNVs. The submicroscopic CNVs that contained a curated CHD gene were enriched for left ventricular obstruction or septal defects, whereas CNVs containing a single gene were enriched for conotruncal defects. Neuronal‐related pathways were over‐represented in single‐gene CNVs, including top candidate causative genes NRXN3, ADCY2, and HCN1. Conclusions Intensive cardiac phenotyping in multisite registry data identifies genotype–phenotype associations in CHD patients with abnormal CMA

    "Fingertip"-Guided noncovalent functionalization of carbon nanotubes by dendrons

    No full text
    Noncovalent functionalization of carbon nanotubes (CNTs) by dendrons was demonstrated. Certain types of dendrons successfully functionalized CNT surfaces through the noncovalent interactions between the peripheries of the dendrons and the sidewalls of CNTs. Dendrons have a unique anisotropic shape and an orthogonal functional group at their apex, and thus can generate a certain spacing between the functional groups upon immobilization on surfaces. Atomic force microscope (AFM) imaging, dispersion experiments, and MicroRaman spectroscopy were employed for the characterization of the functionalization. The binding was found to be governed by the chemical nature of the terminal groups, namely, the "fingertips", through a comparison study on the adsorption efficiency of the dendron analogs. Functional groups such as the carboxylic acid group and the benzyl amide group were effective for the cooperative binding. AFM analysis showed that the average spacing generated by the dendrons was 14-15 nm at a particular adsorption condition. Assembling streptavidin on the tubes through the dendrons and biotin confirmed the realization of the regulated spacing as well as the elimination of unwanted aggregation. The noncovalent functionalization of CNTs by a dendron can be a new approach toward sensible nanobiodevices, not only by introducing biomolecular probes on CNTs without disruption of the electronic network of the tubes, but also by providing the immobilized probe molecules with a space ample enough to minimize steric hindrance for the unhindered interaction with their target species.close101
    corecore