72 research outputs found

    Voltage Regulator Module Noise Analysis for High-Volume Server Applications

    Get PDF
    This paper presents a methodology to analyze voltage regulator module (VRM) noise coupling problems in high-volume server applications. The technique is applied on a real engineering design. The comprehensive model includes irregular power shapes, decoupling capacitors, and dielectric and conductive loss. Irregular shaped power plane modeling is cross-checked with four separate methods to demonstrate accuracy

    The genomic landscape of juvenile myelomonocytic leukemia

    Get PDF
    Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm (MPN) of childhood with a poor prognosis. Mutations in NF1, NRAS, KRAS, PTPN11 and CBL occur in 85% of patients, yet there are currently no risk stratification algorithms capable of predicting which patients will be refractory to conventional treatment and therefore be candidates for experimental therapies. In addition, there have been few other molecular pathways identified aside from the Ras/MAPK pathway to serve as the basis for such novel therapeutic strategies. We therefore sought to genomically characterize serial samples from patients at diagnosis through relapse and transformation to acute myeloid leukemia in order to expand our knowledge of the mutational spectrum in JMML. We identified recurrent mutations in genes involved in signal transduction, gene splicing, the polycomb repressive complex 2 (PRC2) and transcription. Importantly, the number of somatic alterations present at diagnosis appears to be the major determinant of outcome

    Modeling of shielding composite materials and structures for microwave frequencies

    No full text
    Abstract—Composites containing conducting inclusions are required in many engineering applications, especially, for the design of microwave shielding enclosures to ensure electromagnetic compatibility and electromagnetic immunity. Herein, multilayer shielding structures are studied, with both absorbing and reflecting composite layers. In this paper, fiber-filled composites are considered. For modeling absorbing composites with low concentration of conducting cylindrical inclusions (below the percolation threshold), the Maxwell Garnett theory is used. For reflecting layers, when concentration of inclusions is close to or above the percolation threshold, the McLachlan formulation is used. Frequency dependencies for an effective permittivity are approximated by the Debye curves using a curve-fitting procedure, in particular, a genetic algorithm. Corresponding author: M. Y. Koledintsev
    • …
    corecore