284 research outputs found

    Playing TET

    Full text link
    Methylation of the fifth carbon of cytosine was the first epigenetic modification to be discovered in DNA. Recently, three new DNA modifications have come to light: hydroxymethylcytosine, formylcytosine, and carboxylcytosine, all generated by oxidation of methylcytosine by Ten Eleven Translocation (TET) enzymes. These modifications can initiate full DNA demethylation, but they are also likely to participate, like methylcytosine, in epigenetic signalling per se. A scenario is emerging in which coordinated regulation at multiple levels governs the participation of TETs in a wide range of physiological functions, sometimes via a mechanism unrelated to their enzymatic activity. Although still under construction, a sophisticated picture is rapidly forming where, according to the function to be performed, TETs ensure epigenetic marking to create specific landscapes, and whose improper build-up can lead to diseases such as cancer and neurodegenerative disorders. © 2014 The Authors.SCOPUS: re.jFLWINinfo:eu-repo/semantics/publishe

    Altered expression of membrane-bound and soluble CD95/Fas contributes to the resistance of fibrotic lung fibroblasts to FasL induced apoptosis

    Get PDF
    BACKGROUND: An altered susceptibility of lung fibroblasts to Fas-induced apoptosis has been implicated in the pathogenesis of pulmonary fibrosis; however, the underlying mechanism is not completely understood. Here, we studied the susceptibility of lung fibroblasts, obtained from patients with (f-fibs) and without pulmonary fibrosis (n-fibs), to FasL- (CD95L/APO-1) induced apoptosis in relation to the expression and the amounts of membrane-bound and soluble Fas. We also analysed the effects of tumor necrosis factor-β on FasL-induced cell death. METHODS: Apoptosis was induced with recombinant human FasL, with and without prior stimulation of the fibroblasts with tumor necrosis factor-α and measured by a histone fragmentation assay and flow cytometry. The expression of Fas mRNA was determined by quantitative PCR. The expression of cell surface Fas was determined by flow cytometry, and that of soluble Fas (sFas) was determined by enzyme-linked immunosorbent assay. RESULTS: When compared to n-fibs, f-fibs were resistant to FasL-induced apoptosis, despite significantly higher levels of Fas mRNA. F-fibs showed lower expression of surface-bound Fas but higher levels of sFas. While TNF-α increased the susceptibility to FasL-induced apoptosis in n-fibs, it had no pro-apoptotic effect in f-fibs. CONCLUSIONS: The data suggest that lower expression of surface Fas, but higher levels of apoptosis-inhibiting sFas, contribute to the resistance of fibroblasts in lung fibrosis against apoptosis, to increased cellularity and also to increased formation and deposition of extracellular matrix

    Breast tumour cell-induced down-regulation of type I collagen mRNA in fibroblasts

    Get PDF
    This study investigated the modulation of type I collagen gene expression in normal fibroblasts by breast tumour cells. Northern analysis of total RNA extracted from stages I, II and III breast tumour tissue revealed that collagen mRNA levels were elevated in stage I tumours compared to the adjacent normal breast tissues, whereas they were decreased in stages II and III breast tumours. This aberrant collagen gene expression was confirmed by non-radioactive RNA:RNA in situ hybridization analysis of 30 breast carcinomas which localized the production of type I collagen mRNA to the stromal fibroblasts within the vicinity of the tumour cells. In order to determine whether the tumour cells were directly responsible for this altered collagen production by the adjacent fibroblasts, breast tumour cell lines were co-cultured with normal fibroblasts for in vitro assessment of collagen and steady-state collagen RNA levels. Co-culture of tumour cells and normal fibroblasts in the same dish resulted in down-regulation of collagen mRNA and protein. Treatment of the fibroblasts with tumour-cell conditioned medium also resulted in decreased collagen protein levels but the mRNA levels, however, remained unaltered. These results suggested that the tumour cells either secrete a labile ‘factor’, or express a cell surface protein requiring direct contact with the fibroblasts, resulting in down-regulation of collagen gene expression. Modulation of the ECM is a common characteristic of invading tumour cells and usually involves increased production of collagenases by the tumour cells or stromal fibroblasts. This study showed that tumour cells were also able to modulate collagen mRNA production by stromal fibroblasts, which may facilitate tumour cell invasion and metastasis. © 1999 Cancer Research Campaig

    Anti-angiogenic effect of high doses of ascorbic acid

    Get PDF
    Pharmaceutical doses of ascorbic acid (AA, vitamin C, or its salts) have been reported to exert anticancer activity in vitro and in vivo. One proposed mechanism involves direct cytotoxicity mediated by accumulation of ascorbic acid radicals and hydrogen peroxide in the extracellular environment of tumor cells. However, therapeutic effects have been reported at concentrations insufficient to induce direct tumor cell death. We hypothesized that AA may exert anti-angiogenic effects. To test this, we expanded endothelial progenitor cells (EPCs) from peripheral blood and assessed, whether or not high dose AA would inhibit EPC ability to migrate, change energy metabolism, and tube formation ability. We also evaluated the effects of high dose AA on angiogenic activities of HUVECs (human umbilical vein endothelial cells) and HUAECs (human umbilical arterial endothelial cells). According to our data, concentrations of AA higher than 100 mg/dl suppressed capillary-like tube formation on Matrigel for all cells tested and the effect was more pronounced for progenitor cells in comparison with mature cells. Co-culture of differentiated endothelial cells with progenitor cells showed that there was incorporation of EPCs in vessels formed by HUVECs and HUAECs. Cell migration was assessed using an in vitro wound healing model. The results of these experiments showed an inverse correlation between AA concentrations relative to both cell migration and gap filling capacity. Suppression of NO (nitric oxide) generation appeared to be one of the mechanisms by which AA mediated angiostatic effects. This study supports further investigation into non-cytotoxic antitumor activities of AA

    Products of cells from gliomas: IX. Evidence that two fundamentally different mechanisms change extracellular matrix expression by gliomas

    Full text link
    Four human astrocytic gliomas of high grade of malignancy were each evaluated in tissue and in vitro for percentages of cells expressing glial fibrillary acidic protein (GFAP), collagen type IV, laminin and fibronectin assessed by immunofluorescence with counterstaining of nuclear DNA. Percentages of cells with reticulin and cells binding fluorescein-labeled Ulex europaeus agglutinin were also assessed. In tissue, each extracellular matrix (ECM) component was associated with cells in the walls of abnormal proliferations of glioma vessels, and all four tumors had the same staining pattern. Two strikingly different patterns of conversion of gene product expression emerged during in vitro cultivation. (1). In the most common pattern, percentages of all six markers consistently shifted toward the exact phenotype of mesenchymal cells in abnormal vascular proliferations: increased reticulin, collagen type IV, laminin and fibronectin; markedly decreased glial marker GFAP and absent endothelial marker Ulex europaeus agglutinin. The simplest explanation of this constellation of changes coordinated toward expression of vascular ECM markers is that primary glioma cell cultures are overgrown by mesenchymal cells from the abnormal vascular proliferations of the original glioma. These cell cultures were tested for in situ hybridization (ISH) signals of chromosomes 7 and 10. Cells from one glioma had diploid signals. Cells from the other glioma had aneuploid signals indicating they were neoplastic; however, their signals reflected different numerical chromosomal aberrations than those common to neoplastic glia. (2). The second pattern was different. Cells with ISH chromosomal signals of neoplastic glia retained GFAP, and gained collagen type IV. Their laminin and fibronectin diminished, but persisted among a lower percentage of cells. Cloning and double immunofluorescence confirmed the presence of individual cells with glial and mesenchymal markers. A cell expressing GFAP in addition to either fibronectin, reticulin or collagen type IV is not a known constituent of glioblastoma tissue. This provides evidence of a second mechanism of conversion of gene expression in gliomas.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45382/1/11060_2005_Article_BF01052843.pd
    • …
    corecore