3,490 research outputs found

    Transient effects on electron spin observation

    Get PDF
    In an earlier publication we addressed the problem of splitting an electron beam in the Stern-Gerlach experiment. In contrast to arguments put forward in the early days of quantum theory, we concluded that there are no issues of principle preventing the observation of electron spin during free flight. In that paper, however, we considered only a sudden switch off of the separating magnetic field. In this work we consider the possible effects of finite switching times at the beginning and the end of the interaction period. We consider a model where the coupling between the electron and the field is time dependent. As a result of the time dependence, the field also acquires an electric component, but this seems to cause no significant change of our conclusions. On the other hand, the smooth change of the interaction enforces the same longitudinal velocity on the electron both at the beginning and end of the interaction period because of conservation laws; this effect was missing in our earlier calculations. As the electrons are supposed to travel as a beam, this feature helps by restoring the beam quality after the interaction

    On Pauli Pairs

    Get PDF
    The state of a system in classical mechanics can be uniquely reconstructed if we know the positions and the momenta of all its parts. In 1958 Pauli has conjectured that the same holds for quantum mechanical systems. The conjecture turned out to be wrong. In this paper we provide a new set of examples of Pauli pairs, being the pairs of quantum states indistinguishable by measuring the spatial location and momentum. In particular, we construct a new set of spatially localized Pauli pairs.Comment: submitted to JM

    Renormalization of an effective Light-Cone QCD-inspired theory for the Pion and other Mesons

    Get PDF
    The renormalization of the effective QCD-Hamiltonian theory for the quark-antiquark channel is performed in terms of a renormalized or fixed-point Hamiltonian that leads to subtracted dynamical equations. The fixed point-Hamiltonian brings the renormalization conditions as well as the counterterms that render the theory finite. The approach is renormalization group invariant. The parameters of the renormalized effective QCD-Hamiltonian comes from the pion mass and radius, for a given constituent quark mass. The 1s and excited 2s states of uˉq\bar u q are calculated as a function of the mass of the quark qq being s, c or b, and compared to the experimental values.Comment: 39 pages, 10 figure

    Transverse Lattice QCD in 2+1 Dimensions

    Get PDF
    Following a suggestion due to Bardeen and Pearson, we formulate an effective light-front Hamiltonian for large-N gauge theory in (2+1)-dimensions. Two space-time dimensions are continuous and the remaining space dimension is discretised on a lattice. Eguchi-Kawai reduction to a (1+1)-dimensional theory takes place. We investigate the string tension and glueball spectrum, comparing with Euclidean Lattice Monte Carlo data.Comment: 4 pages LaTeX with 2 Postscript figures, uses boxedeps.tex and e spcrc2.sty. Poster session contribution to LATTICE96(poster). Minor changes in new versio

    Vacuum polarization induced by a uniformly accelerated charge

    Get PDF
    We consider a point charge fixed in the Rindler coordinates which describe a uniformly accelerated frame. We determine an integral expression of the induced charge density due to the vacuum polarization at the first order in the fine structure constant. In the case where the acceleration is weak, we give explicitly the induced electrostatic potential.Comment: 13 pages, latex, no figures, to appear in Int. J. Theor. Phys

    Strong Orientation Effects in Ionization of H2+_2^+ by Short, Intense, High-Frequency Light Sources

    Full text link
    We present three dimensional time-dependent calculations of ionization of arbitrarily spatially oriented H2+_2^+ by attosecond, intense, high-frequency laser fields. The ionization probability shows a strong dependence on both the internuclear distance and the relative orientation between the laser field and the internuclear axis.Comment: 4 pages, 4 figure

    One-Loop Determinant of Dirac Operator in Non-Renormalizable Models

    Get PDF
    We use proper-time regularizations to define the one-loop fermion determinant in the form suggested by Gasser and Leutwyler some years ago. We show how to obtain the polynomial by which this definition of ln det D needs to be modified in order to arrive at the fermion determinant whose modulus is invarinat under chiral transformations. As an example it is shown how the fundamental symmetries associated with the NJL model are preserved in a consistent way.Comment: 8 pages, LaTe

    Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis

    Full text link
    We present a computer program which solves the Schrodinger equation of the stationary states for an average nuclear potential of Woods-Saxon type. In this work, we take specifically into account triaxial (i.e. ellipsoidal) nuclear surfaces. The deformation is specified by the usual Bohr parameters. The calculations are carried out in two stages. In the first, one calculates the representative matrix of the Hamiltonian in the cartesian oscillator basis. In the second stage one diagonalizes this matrix with the help of subroutines of the EISPACK library. If it is wished, one can calculate all eigenvalues, or only the part of the eigenvalues that are contained in a fixed interval defined in advance. In this latter case the eigenvectors are given conjointly. The program is very rapid, and the run-time is mainly used for the diagonalization. Thus, it is possible to use a significant number of the basis states in order to insure a best convergence of the results.Comment: no figures, but tbles in separate pdf file

    Self-induced decoherence approach: Strong limitations on its validity in a simple spin bath model and on its general physical relevance

    Get PDF
    The "self-induced decoherence" (SID) approach suggests that (1) the expectation value of any observable becomes diagonal in the eigenstates of the total Hamiltonian for systems endowed with a continuous energy spectrum, and (2), that this process can be interpreted as decoherence. We evaluate the first claim in the context of a simple spin bath model. We find that even for large environments, corresponding to an approximately continuous energy spectrum, diagonalization of the expectation value of random observables does in general not occur. We explain this result and conjecture that SID is likely to fail also in other systems composed of discrete subsystems. Regarding the second claim, we emphasize that SID does not describe a physically meaningful decoherence process for individual measurements, but only involves destructive interference that occurs collectively within an ensemble of presupposed "values" of measurements. This leads us to question the relevance of SID for treating observed decoherence effects.Comment: 11 pages, 4 figures. Final published versio

    Fibre bundle formulation of relativistic quantum mechanics. I. Time-dependent approach

    Full text link
    We propose a new fibre bundle formulation of the mathematical base of relativistic quantum mechanics. At the present stage the bundle form of the theory is equivalent to its conventional one, but it admits new types of generalizations in different directions. In the present first part of our investigation we consider the time-dependent or Hamiltonian approach to bundle description of relativistic quantum mechanics. In it the wavefunctions are replaced by (state) liftings of paths or sections along paths of a suitably chosen vector bundle over space-time whose (standard) fibre is the space of the wavefunctions. Now the quantum evolution is described as a linear transportation (by means of the evolution transport along paths in the space-time) of the state liftings/sections in the (total) bundle space. The equations of these transportations turn to be the bundle versions of the corresponding relativistic wave equations.Comment: 16 standard LaTeX pages. The packages AMS-LaTeX and amsfonts are required. The paper continuous the application of fibre bundle formalism to quantum physics began in the series of works quant-ph/9803083, quant-ph/9803084, quant-ph/9804062, quant-ph/9806046, quant-ph/9901039, quant-ph/9902068, and quant-ph/0004041. For related papers, view http://theo.inrne.bas.bg/~bozho
    • …
    corecore