9,043 research outputs found
The properties of kaonic nuclei in relativistic mean-field theory
The static properties of some possible light and moderate kaonic nuclei, from
C to Ti, are studied in the relativistic mean-field theory. The 1s and 1p state
binding energies of are in the range of MeV and
MeV, respectively. The binding energies of 1p states increase monotonically
with the nucleon number A. The upper limit of the widths are about
MeV for the 1s states, and about MeV for the 1p states. The lower
limit of the widths are about MeV for the 1s states, and
MeV for the 1p states. If MeV, the discrete bound states
should be identified in experiment. The shrinkage effect is found in the
possible kaonic nuclei. The interior nuclear density increases obviously, the
densest center density is about .Comment: 9 pages, 2 tables and 1 figure, widths are considered, changes a lo
Understanding European cross-border cooperation: a framework for analysis
European integration has had a dual impact on border regions. On the one hand, borders were physically dismantled across most of the EU’s internal territory. On the other hand, they have become a fertile ground for territorial co-operation and institutional innovation. The degree of cross-border co-operation and organization achieved varies considerably from one region to another depending on a combination of various facilitating factors for effective cross-border co-operation, more specifically, economic, political leadership, cultural/identity and state formation, and geographical factors. This article offers a conceptual framework to understand the growth and diversity of cross-border regionalism within the EU context by focusing on the levels of and drives for co-operation
Ab initio simulations of liquid NaSn alloys: Zintl anions and network formation
Using the Car-Parrinello technique, ab initio molecular dynamics simulations
are performed for liquid NaSn alloys in five different compositions (20, 40,
50, 57 and 80 % sodium). The obtained structure factors agree well with the
data from neutron scattering experiments. The measured prepeak in the structure
factor is reproduced qualitatively for most compositions. The calculated and
measured positions of all peaks show the same trend as function of the
composition.\\ The dynamic simulations also yield information about the
formation and stability of Sn clusters (Zintl anions) in the liquid. In our
simulations of compositions with 50 and 57 % sodium we observe the formation of
networks of tin atoms. Thus, isolated tin clusters are not stable in such
liquids. For the composition with 20 % tin only isolated atoms or dimers of tin
appear, ``octet compounds'' of one Sn atom surrounded by 4 Na atoms are not
observed.Comment: 12 pages, Latex, 3 Figures on reques
Intercalation-enhanced electric polarization and chain formation of nano-layered particles
Microscopy observations show that suspensions of synthetic and natural
nano-layered smectite clay particles submitted to a strong external electric
field undergo a fast and extended structuring. This structuring results from
the interaction between induced electric dipoles, and is only possible for
particles with suitable polarization properties. Smectite clay colloids are
observed to be particularly suitable, in contrast to similar suspensions of a
non-swelling clay. Synchrotron X-ray scattering experiments provide the
orientation distributions for the particles. These distributions are understood
in terms of competing (i) homogenizing entropy and (ii) interaction between the
particles and the local electric field; they show that clay particles polarize
along their silica sheet. Furthermore, a change in the platelet separation
inside nano-layered particles occurs under application of the electric field,
indicating that intercalated ions and water molecules play a role in their
electric polarization. The resulting induced dipole is structurally attached to
the particle, and this causes particles to reorient and interact, resulting in
the observed macroscopic structuring. The macroscopic properties of these
electro-rheological smectite suspensions may be tuned by controlling the nature
and quantity of the intercalated species, at the nanoscale.Comment: 7 pages, 5 figure
Non‐native species have multiple abundance–impact curves
The abundance–impact curve is helpful for understanding and managing the impacts of non‐native species. Abundance–impact curves can have a wide range of shapes (e.g., linear, threshold, sigmoid), each with its own implications for scientific understanding and management. Sometimes, the abundance–impact curve has been viewed as a property of the species, with a single curve for a species. I argue that the abundance–impact curve is determined jointly by a non‐native species and the ecosystem it invades, so that a species may have multiple abundance–impact curves. Models of the impacts of the invasive mussel Dreissena show how a single species can have multiple, noninterchangeable abundance–impact curves. To the extent that ecosystem characteristics determine the abundance–impact curve, abundance–impact curves based on horizontal designs (space‐for‐time substitution) may be misleading and should be used with great caution, it at all. It is important for scientists and managers to correctly specify the abundance–impact curve when considering the impacts of non‐native species. Diverting attention from the invading species to the invaded ecosystem, and especially to the interaction between species and ecosystem, could improve our understanding of how non‐native species affect ecosystems and reduce uncertainty around the effects of management of populations of non‐native species.The abundance–impact curve is a useful tool for understanding and managing the impacts of invasive species. Using models based on the impacts of the zebra mussel, I show that a single invasive species can have radically different abundance–impact curves in different habitats. This means that managers must be careful to use the correct abundance–impact curve and that scientists should avoid using space‐for‐time substitution to understand the impacts of invaders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156222/2/ece36364.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156222/1/ece36364_am.pd
The relationship between anti-mullerian hormone in women receiving fertility assessments and age at menopause in subfertile women: evidence from large population studies
<p>Context: Anti-Müllerian hormone (AMH) concentration reflects ovarian aging and is argued to be a useful predictor of age at menopause (AMP). It is hypothesized that AMH falling below a critical threshold corresponds to follicle depletion, which results in menopause. With this threshold, theoretical predictions of AMP can be made. Comparisons of such predictions with observed AMP from population studies support the role for AMH as a forecaster of menopause.</p>
<p>Objective: The objective of the study was to investigate whether previous relationships between AMH and AMP are valid using a much larger data set.</p>
<p>Setting: AMH was measured in 27 563 women attending fertility clinics.</p>
<p>Study Design: From these data a model of age-related AMH change was constructed using a robust regression analysis. Data on AMP from subfertile women were obtained from the population-based Prospect-European Prospective Investigation into Cancer and Nutrition (Prospect-EPIC) cohort (n = 2249). By constructing a probability distribution of age at which AMH falls below a critical threshold and fitting this to Prospect-EPIC menopausal age data using maximum likelihood, such a threshold was estimated.</p>
<p>Main Outcome: The main outcome was conformity between observed and predicted AMP.</p>
<p>Results: To get a distribution of AMH-predicted AMP that fit the Prospect-EPIC data, we found the critical AMH threshold should vary among women in such a way that women with low age-specific AMH would have lower thresholds, whereas women with high age-specific AMH would have higher thresholds (mean 0.075 ng/mL; interquartile range 0.038–0.15 ng/mL). Such a varying AMH threshold for menopause is a novel and biologically plausible finding. AMH became undetectable (<0.2 ng/mL) approximately 5 years before the occurrence of menopause, in line with a previous report.</p>
<p>Conclusions: The conformity of the observed and predicted distributions of AMP supports the hypothesis that declining population averages of AMH are associated with menopause, making AMH an excellent candidate biomarker for AMP prediction. Further research will help establish the accuracy of AMH levels to predict AMP within individuals.</p>
- …