6,148 research outputs found

    Black Extended Objects, Naked Singularities and P-Branes

    Full text link
    We treat the horizons of charged, dilaton black extended objects as quantum mechanical objects. We show that the S matrix for such an object can be written in terms of a p-brane-like action. The requirements of unitarity of the S matrix and positivity of the p-brane tension equivalent severely restrict the number of space-time dimensions and the allowed values of the dilaton parameter a. Generally, black objects transform at the extremal limit into p-branes.Comment: 9 pages, REVTE

    Dilatonic Black Holes, Naked Singularities and Strings

    Full text link
    We extend a previous calculation which treated Schwarschild black hole horizons as quantum mechanical objects to the case of a charged, dilaton black hole. We show that for a unique value of the dilaton parameter `a', which is determined by the condition of unitarity of the S matrix, black holes transform at the extremal limit into strings.Comment: 8 pages, REVTE

    Spectral analysis and abundances of the post-HB star HD 76431

    Full text link
    HD76431 is a slow rotating post-HB star that shows an underabundance of helium by 0.5 dex relative to the solar value. These observational facts suggest that atomic diffusion could be active in its atmosphere. We have used the MMT and Bok spectra to estimate the atmospheric parameters of the target star using the model atmospheres and synthetic spectra calculated with TLUSTY and SYNSPEC. The derived values of the effective temperature, surface gravity, helium abundance are consistent with those obtained by Ramspeck et al. (2001b). It appears that NLTE effect are not important for HD76431. We have used Stokes I spectra from ESPaDOnS at CFHT to perform an abundance analysis and a search for observational evidence of vertical stratification of the abundance of certain elements. The results of our abundance analysis are in good agreement with previously published data with respect to average abundances. Our numerical simulations show that carbon and nitrogen reveal signatures of vertical abundance stratification in the atmosphere of HD76431. It appears that the carbon abundance increases toward the deeper atmospheric layers. Nitrogen also shows a similar behaviour, but in deeper atmospheric layers we obtain a significant dispersion for the estimates of its abundance. To our knowledge, this is the first demonstration of vertical abundance stratification of metals in a post-HB star and up to now it is the hottest star to show such stratification features. We also report the detection of two SiIII and one TiIII emission lines in the spectra of HD76431 that were not detected in previous studies.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Micromagnetic simulations of sweep-rate dependent coercivity in perpendicular recording media

    Full text link
    The results of micromagnetic simulations are presented which examine the impact of thermal fluctuations on sweep rate dependent coercivities of both single-layer and exchange-coupled-composite (ECC) perpendicular magnetic recording media. M-H loops are calculated at four temperatures and sweep rates spanning five decades with fields applied normal to the plane and at 45 degrees. The impact of interactions between grains is evaluated. The results indicate a significantly weaker sweep-rate dependence for ECC media suggesting more robustness to long-term thermal effects. Fitting the modeled results to Sharrock-like scaling proposed by Feng and Visscher [J. Appl. Phys. 95, 7043 (2004)] is successful only in the case of single-layer media with the field normal to the plane.Comment: 7 pages, 14 figure

    Monolithic InP-Based Grating Spectrometer for Wavelength-Division Multiplexed Systems at 1.5 Îźm

    Get PDF
    A monolithic InP-based grating spectrometer for use in wavelength-division multiplexed systems at 1.5 Îźm is reported. The spectrometer uses a single etched reflective focusing diffraction grating and resolves >50 channels at 1 nm spacing with a ~0.3nm channel width and at least 19dB channel isolation. Operation is essentially of the state of the input polarisation

    High-Harmonic Fast-Wave heating in NSTX

    Get PDF

    Investigation of HHFW and NBI Combined Heating in NSTX

    Get PDF

    Extended crossover from Fermi liquid to quasi-antiferromagnet in the half-filled 2D Hubbard model

    Get PDF
    The ground state of the Hubbard model with nearest-neighbor hopping on the square lattice at half filling is known to be that of an antiferromagnetic (AFM) band insulator for any on-site repulsion. At finite temperature, the absence of long-range order makes the question of how the interaction-driven insulator is realized nontrivial. We address this problem with controlled accuracy in the thermodynamic limit using self-energy diagrammatic determinant Monte Carlo and dynamical cluster approximation methods and show that development of long-range AFM correlations drives an extended crossover from Fermi liquid to insulating behavior in the parameter regime that precludes a metal-to-insulator transition. The intermediate crossover state is best described as a non-Fermi liquid with a partially gapped Fermi surface.Comment: 6 pages, 4 figures, with supplemental material: 2 pages, 3 figure
    • …
    corecore