28,148 research outputs found
Logarithmic temperature dependence of conductivity at half-integer filling factors: Evidence for interaction between composite fermions
We have studied the temperature dependence of diagonal conductivity in
high-mobility two-dimensional samples at filling factors and 3/2 at
low temperatures. We observe a logarithmic dependence on temperature, from our
lowest temperature of 13 mK up to 400 mK. We attribute the logarithmic
correction to the effects of interaction between composite fermions, analogous
to the Altshuler-Aronov type correction for electrons at zero magnetic field.
The paper is accepted for publication in Physical Review B, Rapid
Communications.Comment: uses revtex macro
Optimisation of a Brownian dynamics algorithm for semidilute polymer solutions
Simulating the static and dynamic properties of semidilute polymer solutions
with Brownian dynamics (BD) requires the computation of a large system of
polymer chains coupled to one another through excluded-volume and hydrodynamic
interactions. In the presence of periodic boundary conditions, long-ranged
hydrodynamic interactions are frequently summed with the Ewald summation
technique. By performing detailed simulations that shed light on the influence
of several tuning parameters involved both in the Ewald summation method, and
in the efficient treatment of Brownian forces, we develop a BD algorithm in
which the computational cost scales as O(N^{1.8}), where N is the number of
monomers in the simulation box. We show that Beenakker's original
implementation of the Ewald sum, which is only valid for systems without bead
overlap, can be modified so that \theta-solutions can be simulated by switching
off excluded-volume interactions. A comparison of the predictions of the radius
of gyration, the end-to-end vector, and the self-diffusion coefficient by BD,
at a range of concentrations, with the hybrid Lattice Boltzmann/Molecular
Dynamics (LB/MD) method shows excellent agreement between the two methods. In
contrast to the situation for dilute solutions, the LB/MD method is shown to be
significantly more computationally efficient than the current implementation of
BD for simulating semidilute solutions. We argue however that further
optimisations should be possible.Comment: 17 pages, 8 figures, revised version to appear in Physical Review E
(2012
The Virgo Alignment Puzzle in Propagation of Radiation on Cosmological Scales
We reconsider analysis of data on the cosmic microwave background on the
largest angular scales. Temperature multipoles of any order factor naturally
into a direct product of axial quantities and cosets. Striking coincidences
exist among the axes associated with the dipole, quadrupole, and octupole CMB
moments. These axes also coincide well with two other axes independently
determined from polarizations at radio and optical frequencies propagating on
cosmological scales. The five coincident axes indicate physical correlation and
anisotropic properties of the cosmic medium not predicted by the conventional
Big Bang scenario. We consider various mechanisms, including foreground
corrections, as candidates for the observed correlations. We also consider
whether the propagation anomalies may be a signal of ``dark energy'' in the
form of a condensed background field. Perhaps {\it light propagation} will
prove to be an effective way to look for the effects of {\it dark energy}.Comment: 24 pages, 4 figures, minor changes, no change in result or
conclusions. to appear in IJMP
Cumulative effect of Forbush decreases in the heliospheric modulation during the present solar cycle
A monthly Forbush decrease index (Fd-I) is generated and it is compared with the observed long term chnges in the cosmic ray intensity near earth at energies greater than or equal to 1 Gev over 1976-83. Significant correlation is observed between the two except for 1978. Such an effect is also seen in the correlation plot between the solar flare index (SFI) and Fd-I
Escalation of error catastrophe for enzymatic self-replicators
It is a long-standing question in origin-of-life research whether the
information content of replicating molecules can be maintained in the presence
of replication errors. Extending standard quasispecies models of non-enzymatic
replication, we analyze highly specific enzymatic self-replication mediated
through an otherwise neutral recognition region, which leads to
frequency-dependent replication rates. We find a significant reduction of the
maximally tolerable error rate, because the replication rate of the fittest
molecules decreases with the fraction of functional enzymes. Our analysis is
extended to hypercyclic couplings as an example for catalytic networks.Comment: 6 pages, 4 figures; accepted at Europhys. Let
- …