18,890 research outputs found
Anomalous dephasing of bosonic excitons interacting with phonons in the vicinity of the Bose-Einstein condensation
The dephasing and relaxation kinetics of bosonic excitons interacting with a
thermal bath of acoustic phonons is studied after coherent pulse excitation.
The kinetics of the induced excitonic polarization is calculated within
Markovian equations both for subcritical and supercritical excitation with
respect to a Bose-Einstein condensation (BEC). For excited densities n below
the critical density n_c, an exponential polarization decay is obtained, which
is characterized by a dephasing rate G=1/T_2. This dephasing rate due to phonon
scattering shows a pronounced exciton-density dependence in the vicinity of the
phase transition. It is well described by the power law G (n-n_c)^2 that can be
understood by linearization of the equations around the equilibrium solution.
Above the critical density we get a non-exponential relaxation to the final
condensate value p^0 with |p(t)|-|p^0| ~1/t that holds for all densities.
Furthermore we include the full self-consistent Hartree-Fock-Bogoliubov (HFB)
terms due to the exciton-exciton interaction and the kinetics of the anomalous
functions F_k= . The collision terms are analyzed and an
approximation is used which is consistent with the existence of BEC. The
inclusion of the coherent x-x interaction does not change the dephasing laws.
The anomalous function F_k exhibits a clear threshold behaviour at the critical
density.Comment: European Physical Journal B (in print
Involutivity of integrals for sine-Gordon, modified KdV and potential KdV maps
Closed form expressions in terms of multi-sums of products have been given in
\cite{Tranclosedform, KRQ} of integrals of sine-Gordon, modified Korteweg-de
Vries and potential Korteweg-de Vries maps obtained as so-called
-traveling wave reductions of the corresponding partial difference
equations. We prove the involutivity of these integrals with respect to
recently found symplectic structures for those maps. The proof is based on
explicit formulae for the Poisson brackets between multi-sums of products.Comment: 24 page
Fuselage shell and cavity response measurements on a DC-9 test section
A series of fuselage shell and cavity response measurements conducted on a DC-9 aircraft test section are described. The objectives of these measurements were to define the shell and cavity model characteristics of the fuselage, understand the structural-acoustic coupling characteristics of the fuselage, and measure the response of the fuselage to different types of acoustic and vibration excitation. The fuselage was excited with several combinations of acoustic and mechanical sources using interior and exterior loudspeakers and shakers, and the response to these inputs was measured with arrays of microphones and accelerometers. The data were analyzed to generate spatial plots of the shell acceleration and cabin acoustic pressure field, and corresponding acceleration and pressure wavenumber maps. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, structural-acoustic coupling, and fuselage response
``Superfast'' Reaction in Turbulent Flow with Potential Disorder
We explore the regime of ``superfast'' reactivity that has been predicted to
occur in turbulent flow in the presence of potential disorder. Computer
simulation studies confirm qualitative features of the previous renormalization
group predictions, which were based on a static model of turbulence. New
renormalization group calculations for a more realistic, dynamic model of
turbulence show that the superfast regime persists. This regime, with
concentration decay exponents greater than that for a well-mixed reaction,
appears to be a general result of the interplay among non-linear reaction
kinetics, turbulent transport, and local trapping by potential disorder.Comment: 14 pages. 4 figures. Uses IOP styles. To appear in J. Phys. A: Math.
Ge
Validation of accelerometer data for measuring impacts during jumping and landing tasks
The purpose of this study was to examine the validity of a commercially-available accelerometer, as used in the field team sports context. Ten adult participants completed two movement tasks: 1) a drop landing task from 30-cm, 40-cm and 50-cm heights [DLAND], and 2) a countermovement jumping task [CMJ]. Peak acceleration values, both smoothed and unsmoothed, occurring in the longitudinal axis [Y] and calculated to produce vector magnitude values [VM], were compared to peak vertical ground reaction force values [VGRF]. All acceleration measures were moderately correlated (r = 0.45 – 0.70), but also significantly higher than weight-adjusted VGRF, for both tasks. Though the raw acceleration measures were mostly above the acceptable limit for error (> 20%), the smoothed data had reduced error margins by comparison, most of which were well below 20%. These results provide some support for the continued use of accelerometer data, particularly when smoothed, to accurately quantify impacts in the field.<br /
VALIDATION OF ACCELEROMETER DATA FOR MEASURING IMPACTS DURING JUMPING AND LANDING TASKS
The purpose of this study was to examine the validity of a commercially-available accelerometer, as used in the field team sports context. Ten adult participants completed two movement tasks: 1) a drop landing task from 30-cm, 40-cm and 50-cm heights [DLAND], and 2) a countermovement jumping task [CMJ]. Peak acceleration values, both smoothed and unsmoothed, occurring in the longitudinal axis [Y] and calculated to produce vector magnitude values [VM], were compared to peak vertical ground reaction force values [VGRF]. All acceleration measures were moderately correlated (r = 0.45 – 0.70), but also significantly higher than weight-adjusted VGRF, for both tasks. Though the raw acceleration measures were mostly above the acceptable limit for error (> 20%), the smoothed data had reduced error margins by comparison, most of which were well below 20%. These results provide some support for the continued use of accelerometer data, particularly when smoothed, to accurately quantify impacts in the field
UHB demonstrator interior noise control flight tests and analysis
The measurement and analysis of MD-UHB (McDonnell Douglas Ultra High Bypass) Demonstrator noise and vibration flight test data are described as they relate to passenger cabin noise. The analyses were done to investigate the interior noise characteristics of advanced turboprop aircraft with aft-mounted engines, and to study the effectiveness of selected noise control treatments in reducing passenger cabin noise. The UHB Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB engine. For these tests, the UHB engine was a General Electric Unducted Fan, with either 8x8 or 10x8 counter-rotating propeller configurations. Interior noise level characteristics were studied for several altitudes and speeds, with emphasis on high altitude (35,000 ft), high speed (0.75 Mach) cruise conditions. The effectiveness of several noise control treatments was evaluated based on cabin noise measurements. The important airborne and structureborne transmission paths were identified for both tonal and broadband sources using the results of a sound intensity survey, exterior and interior noise and vibration data, and partial coherence analysis techniques. Estimates of the turbulent boundary layer pressure wavenumber-frequency spectrum were made, based on measured fuselage noise levels
Number Fluctuation in an interacting trapped gas in one and two dimensions
It is well-known that the number fluctuation in the grand canonical ensemble,
which is directly proportional to the compressibility, diverges for an ideal
bose gas as T -> 0. We show that this divergence is removed when the atoms
interact in one dimension through an inverse square two-body interaction. In
two dimensions, similar results are obtained using a self-consistent
Thomas-Fermi (TF) model for a repulsive zero-range interaction. Both models may
be mapped on to a system of non-interacting particles obeying the Haldane-Wu
exclusion statistics. We also calculate the number fluctuation from the ground
state of the gas in these interacting models, and compare the grand canonical
results with those obtained from the canonical ensemble.Comment: 11 pages, 1 appendix, 3 figures. Submitted to J. Phys. B: Atomic,
Molecular & Optica
- …