149 research outputs found

    Offender rehabilitation : a normative framework for forensic psychologists

    Full text link
    Community protection from offenders is addressed through punishment, deterrence, incapacitation, and/or rehabilitation. The current public policy debate about community protection refers to community rights as opposed to offender rights as if the two are mutually exclusive. However, in this article it will be argued that offender rehabilitation can enhance community protection if it addresses community rights and offender rights. The author proposes a normative framework to guide forensic psychologists in offender rehabilitation. The normative framework considers psychological theory&mdash;the risk-need model to address community rights and the good lives model to address offender rights. However, forensic psychologists operate within the context of the criminal justice system and so legal theory will also be considered. Therapeutic jurisprudence can balance community rights and offender rights within a human rights perspective. The proposed normative framework guides forensic psychologists in the assessment of risk, the treatment of need, and the management of readiness in balancing community rights and offender rights. Within a human rights perspective, forensic psychologists have a duty to provide offenders with the opportunity to make autonomous decisions about whether to accept or reject rehabilitation. <br /

    On a clear day you can see forever : integrating values and skills in sex offender treatment

    Full text link
    The topic of sex offender rehabilitation frequently evokes fierce reactions, ranging from strident demands for harsher sentences contrasted with calls for more imaginative and compassionate sentencing options. There seems to be a polarization of positions centred on the question of offenders\u27 moral standing: are they moral strangers or fellow travellers? This fundamental disagreement about offenders\u27 moral status is at the core of a number of independent, although related current practice and research issues confronting the field, namely: (1) risk management versus strength-based treatment approaches; (2) the utility of utilizing individually tailored versus manual-based programmes for offenders; (3) focusing on the technical aspects or therapy as opposed to relationship and therapist factors (what has been called process issues); and (4) the conflict between protecting the community versus promoting the interests of offenders. In this paper I suggest that an approach to sex offender treatment based on a combination of human rights theory (an ethical resource) and strengths-based approaches can help us navigate our way through the above dilemmas in a way that addressees both the needs of offenders and those of the community

    Systems-Level Modeling of Cancer-Fibroblast Interaction

    Get PDF
    Cancer cells interact with surrounding stromal fibroblasts during tumorigenesis, but the complex molecular rules that govern these interactions remain poorly understood thus hindering the development of therapeutic strategies to target cancer stroma. We have taken a mathematical approach to begin defining these rules by performing the first large-scale quantitative analysis of fibroblast effects on cancer cell proliferation across more than four hundred heterotypic cell line pairings. Systems-level modeling of this complex dataset using singular value decomposition revealed that normal tissue fibroblasts variably express at least two functionally distinct activities, one which reflects transcriptional programs associated with activated mesenchymal cells, that act either coordinately or at cross-purposes to modulate cancer cell proliferation. These findings suggest that quantitative approaches may prove useful for identifying organizational principles that govern complex heterotypic cell-cell interactions in cancer and other contexts

    The activation of Proteinase-Activated Receptor-1 (PAR1) mediates gastric cancer cell proliferation and invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to regulating platelet function, the G protein-coupled sub-family member Proteinase-activated receptor-1 (PAR1) has a proposed role in the development of various cancers, but its exact role and mechanism of action in the invasion, metastasis, and proliferation process in gastric cancer have yet to be completely elucidated. Here, we analyzed the relationship between PAR1 activation, proliferation, invasion, and the signaling pathways downstream of PAR1 activation in gastric cancer.</p> <p>Methods</p> <p>We established a PAR1 stably transfected MKN45 human gastric cancer cell line (MKN45/PAR1) and performed cell proliferation and invasion assays employing this cell line and MKN28 cell line exposed to PAR1 agonists (α-thrombin and TFLLR-NH<sub>2</sub>). We also quantified NF-κB activation by electrophoretic mobility shift assay (EMSA) and the level of Tenascin-C (TN-C) expression in conditioned medium by ELISA of MKN45/PAR1 following administration of α-thrombin. A high molecular weight concentrate was derived from the resultant conditioned medium and subsequent cultures of MKN45/PAR1 and MKN28 were exposed to the resultant concentrate either in the presence or absence of TN-C-neutralizing antibody. Lysates of these subsequent cells were probed to quantify levels of phospholyrated Epidermal Growth Factor Receptor (EGFR).</p> <p>Result</p> <p>PAR1 in both PAR1/MKN45 and MKN28 was activated by PAR1 agonists, resulting in cell proliferation and matrigel invasion. We have shown that activation of NF-κB and EGFR phosphorylation initially were triggered by the activation of PAR1 with α-thrombin. Quantitative PCR and Western blot assay revealed up-regulation of mRNA and protein expression of NF-κB target genes, especially TN-C, a potential EGFR activator. The suppressed level of phosphorylated EGFR, observed in cells exposed to concentrate of conditioned medium in the presence of TN-C-neutralizing antibody, identifies TN-C as a putative autocrine stimulatory factor of EGFR possibly involved in the sustained PAR1 activation responses observed.</p> <p>Conclusion</p> <p>Our data indicate that in gastric carcinoma cells, PAR1 activation can trigger an array of responses that would promote tumor cell growth and invasion. Over expression of NF-κB, EGFR, and TN-C, are among the effects of PAR1 activation and TN-C induces EGFR activation in an autocrine manner. Thus, PAR1 is a potentially important therapeutic target for the treatment of gastric cancer.</p

    Tenascin-C Enhances Pancreatic Cancer Cell Growth and Motility and Affects Cell Adhesion through Activation of the Integrin Pathway

    Get PDF
    Background: Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells. Methods: Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition. Results: Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt. Conclusion: TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and migh

    The role of tenascin-C in tissue injury and tumorigenesis

    Get PDF
    The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer

    Advances in tenascin-C biology

    Get PDF
    Tenascin-C is an extracellular matrix glycoprotein that is specifically and transiently expressed upon tissue injury. Upon tissue damage, tenascin-C plays a multitude of different roles that mediate both inflammatory and fibrotic processes to enable effective tissue repair. In the last decade, emerging evidence has demonstrated a vital role for tenascin-C in cardiac and arterial injury, tumor angiogenesis and metastasis, as well as in modulating stem cell behavior. Here we highlight the molecular mechanisms by which tenascin-C mediates these effects and discuss the implications of mis-regulated tenascin-C expression in driving disease pathology

    Matricellular Proteins Produced by Melanocytes and Melanomas: In Search for Functions

    Get PDF
    Matricellular proteins are modulators of cell-matrix interactions and cellular functions. The group includes thrombospondin, osteopontin, osteonectin/SPARC, tenascin, disintegrins, galectins and CCN proteins. The production of matricellular proteins such as osteopontin, SPARC or tenascin is highly upregulated in melanoma and other tumors but little is known about their functions in tumor growth, survival, and metastasis. The distribution pattern of CCN3 differs from most other matricellular proteins, such that it is produced abundantly by normal melanocytes, but is not significantly expressed in melanoma cells. CCN3 is known to inhibit melanocyte proliferation and stimulate adhesion to collagen type IV, the main component of the basement membrane. CCN3 has a unique role in securing adhesion of melanocytes to the basement membrane distinct from other melanoma-produced matricellular proteins which act as de-adhesive molecules and antagonists of focal adhesion. Qualitative and quantitative changes in matricellular protein expression contribute to melanoma progression similar to the E-cadherin to N-cadherin class switch, allowing melanoma cells to escape from keratinocyte control

    37th International Symposium on Intensive Care and Emergency Medicine (part 3 of 3)

    Full text link
    corecore