24 research outputs found
Factor-Group-Generated Polar Spaces and (Multi-)Qudits
Recently, a number of interesting relations have been discovered between generalised Pauli/Dirac groups and certain finite geometries. Here, we succeeded in finding a general unifying framework for all these relations. We introduce gradually necessary and sufficient conditions to be met in order to carry out the following programme: Given a group G, we first construct vector spaces over GF(p), p a prime, by factorising G over appropriate normal subgroups. Then, by expressing GF(p) in terms of the commutator subgroup of G, we construct alternating bilinear forms, which reflect whether or not two elements of G commute. Restricting to p = 2, we search for ''refinements'' in terms of quadratic forms, which capture the fact whether or not the order of an element of G is ≤ 2. Such factor-group-generated vector spaces admit a natural reinterpretation in the language of symplectic and orthogonal polar spaces, where each point becomes a ''condensation'' of several distinct elements of G. Finally, several well-known physical examples (single- and two-qubit Pauli groups, both the real and complex case) are worked out in detail to illustrate the fine traits of the formalism
On Invariant Notions of Segre Varieties in Binary Projective Spaces
Invariant notions of a class of Segre varieties \Segrem(2) of PG(2^m - 1,
2) that are direct products of copies of PG(1, 2), being any positive
integer, are established and studied. We first demonstrate that there exists a
hyperbolic quadric that contains \Segrem(2) and is invariant under its
projective stabiliser group \Stab{m}{2}. By embedding PG(2^m - 1, 2) into
\PG(2^m - 1, 4), a basis of the latter space is constructed that is invariant
under \Stab{m}{2} as well. Such a basis can be split into two subsets whose
spans are either real or complex-conjugate subspaces according as is even
or odd. In the latter case, these spans can, in addition, be viewed as
indicator sets of a \Stab{m}{2}-invariant geometric spread of lines of PG(2^m
- 1, 2). This spread is also related with a \Stab{m}{2}-invariant
non-singular Hermitian variety. The case is examined in detail to
illustrate the theory. Here, the lines of the invariant spread are found to
fall into four distinct orbits under \Stab{3}{2}, while the points of PG(7,
2) form five orbits.Comment: 18 pages, 1 figure; v2 - version accepted in Designs, Codes and
Cryptograph
The Veldkamp space of multiple qubits
We introduce a point-line incidence geometry in which the commutation
relations of the real Pauli group of multiple qubits are fully encoded. Its
points are pairs of Pauli operators differing in sign and each line contains
three pairwise commuting operators any of which is the product of the other two
(up to sign).
We study the properties of its Veldkamp space enabling us to identify subsets
of operators which are distinguished from the geometric point of view. These
are geometric hyperplanes and pairwise intersections thereof.
Among the geometric hyperplanes one can find the set of self-dual operators
with respect to the Wootters spin-flip operation well-known from studies
concerning multiqubit entanglement measures. In the two- and three-qubit cases
a class of hyperplanes gives rise to Mermin squares and other generalized
quadrangles. In the three-qubit case the hyperplane with points corresponding
to the 27 Wootters self-dual operators is just the underlying geometry of the
E6(6) symmetric entropy formula describing black holes and strings in five
dimensions.Comment: 15 pages, 1 figure; added references, corrected typos; minor change
Ortho-circles
In the present paper we define ortho-circles as circles or straight lines intersecting a given surface in two different points orthogonally. It turns out that ortho-circles of some special classes of surfaces can easily be found. By the way we find a characterization of the Euclidean sphere by means of ortho-circles. Moreover there are some remarkable relations to Non-Euclidean geometries
The influence of calcium on technological properties and micropurity of steel castings
The paper analyzes the technological parameters, micro-purity and mechanical properties of castings of steel alloyed with calcium. The effect of calcium on the steel was analyzed on samples taken in the process of casting heavy castings and ingots of the weight of ranging from 40 000 to 60 000 kg. Samples for the determination of the liquidus temperature and the solidus temperature of cast steels were analysed using differential thermal analysis (DTA). The production of low alloyed steel grades was performed on the EAF - ASEA-SKF facilities and the production of highalloyed steels on the EAF - ASEA-SKF - SS-VOD facilities. The purity calcium was added into the steel by the injection of a stuffed profile