24 research outputs found

    Factor-Group-Generated Polar Spaces and (Multi-)Qudits

    No full text
    Recently, a number of interesting relations have been discovered between generalised Pauli/Dirac groups and certain finite geometries. Here, we succeeded in finding a general unifying framework for all these relations. We introduce gradually necessary and sufficient conditions to be met in order to carry out the following programme: Given a group G, we first construct vector spaces over GF(p), p a prime, by factorising G over appropriate normal subgroups. Then, by expressing GF(p) in terms of the commutator subgroup of G, we construct alternating bilinear forms, which reflect whether or not two elements of G commute. Restricting to p = 2, we search for ''refinements'' in terms of quadratic forms, which capture the fact whether or not the order of an element of G is ≤ 2. Such factor-group-generated vector spaces admit a natural reinterpretation in the language of symplectic and orthogonal polar spaces, where each point becomes a ''condensation'' of several distinct elements of G. Finally, several well-known physical examples (single- and two-qubit Pauli groups, both the real and complex case) are worked out in detail to illustrate the fine traits of the formalism

    On Invariant Notions of Segre Varieties in Binary Projective Spaces

    Full text link
    Invariant notions of a class of Segre varieties \Segrem(2) of PG(2^m - 1, 2) that are direct products of mm copies of PG(1, 2), mm being any positive integer, are established and studied. We first demonstrate that there exists a hyperbolic quadric that contains \Segrem(2) and is invariant under its projective stabiliser group \Stab{m}{2}. By embedding PG(2^m - 1, 2) into \PG(2^m - 1, 4), a basis of the latter space is constructed that is invariant under \Stab{m}{2} as well. Such a basis can be split into two subsets whose spans are either real or complex-conjugate subspaces according as mm is even or odd. In the latter case, these spans can, in addition, be viewed as indicator sets of a \Stab{m}{2}-invariant geometric spread of lines of PG(2^m - 1, 2). This spread is also related with a \Stab{m}{2}-invariant non-singular Hermitian variety. The case m=3m=3 is examined in detail to illustrate the theory. Here, the lines of the invariant spread are found to fall into four distinct orbits under \Stab{3}{2}, while the points of PG(7, 2) form five orbits.Comment: 18 pages, 1 figure; v2 - version accepted in Designs, Codes and Cryptograph

    The Veldkamp space of multiple qubits

    Full text link
    We introduce a point-line incidence geometry in which the commutation relations of the real Pauli group of multiple qubits are fully encoded. Its points are pairs of Pauli operators differing in sign and each line contains three pairwise commuting operators any of which is the product of the other two (up to sign). We study the properties of its Veldkamp space enabling us to identify subsets of operators which are distinguished from the geometric point of view. These are geometric hyperplanes and pairwise intersections thereof. Among the geometric hyperplanes one can find the set of self-dual operators with respect to the Wootters spin-flip operation well-known from studies concerning multiqubit entanglement measures. In the two- and three-qubit cases a class of hyperplanes gives rise to Mermin squares and other generalized quadrangles. In the three-qubit case the hyperplane with points corresponding to the 27 Wootters self-dual operators is just the underlying geometry of the E6(6) symmetric entropy formula describing black holes and strings in five dimensions.Comment: 15 pages, 1 figure; added references, corrected typos; minor change

    Ortho-circles

    No full text
    In the present paper we define ortho-circles as circles or straight lines intersecting a given surface in two different points orthogonally. It turns out that ortho-circles of some special classes of surfaces can easily be found. By the way we find a characterization of the Euclidean sphere by means of ortho-circles. Moreover there are some remarkable relations to Non-Euclidean geometries

    The influence of calcium on technological properties and micropurity of steel castings

    Get PDF
    The paper analyzes the technological parameters, micro-purity and mechanical properties of castings of steel alloyed with calcium. The effect of calcium on the steel was analyzed on samples taken in the process of casting heavy castings and ingots of the weight of ranging from 40 000 to 60 000 kg. Samples for the determination of the liquidus temperature and the solidus temperature of cast steels were analysed using differential thermal analysis (DTA). The production of low alloyed steel grades was performed on the EAF - ASEA-SKF facilities and the production of highalloyed steels on the EAF - ASEA-SKF - SS-VOD facilities. The purity calcium was added into the steel by the injection of a stuffed profile
    corecore