22 research outputs found

    Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer's disease: a longitudinal observational study

    Get PDF
    BACKGROUND: Therapeutic modulation of TREM2-dependent microglial function might provide an additional strategy to slow the progression of Alzheimer's disease. Although studies in animal models suggest that TREM2 is protective against Alzheimer's pathology, its effect on tau pathology and its potential beneficial role in people with Alzheimer's disease is still unclear. Our aim was to study associations between the dynamics of soluble TREM2, as a biomarker of TREM2 signalling, and amyloid β (Aβ) deposition, tau-related pathology, neuroimaging markers, and cognitive decline, during the progression of autosomal dominant Alzheimer's disease. METHODS: We did a longitudinal analysis of data from the Dominantly Inherited Alzheimer Network (DIAN) observational study, which includes families with a history of autosomal dominant Alzheimer's disease. Participants aged over 18 years who were enrolled in DIAN between Jan 1, 2009, and July 31, 2019, were categorised as either carriers of pathogenic variants in PSEN1, PSEN2, and APP genes (n=155) or non-carriers (n=93). We measured amounts of cleaved soluble TREM2 using a novel immunoassay in CSF samples obtained every 2 years from participants who were asymptomatic (Clinical Dementia Rating [CDR]=0) and annually for those who were symptomatic (CDR>0). CSF concentrations of Aβ40, Aβ42, total tau (t-tau), and tau phosphorylated on threonine 181 (p-tau) were measured by validated immunoassays. Predefined neuroimaging measurements were total cortical uptake of Pittsburgh compound B PET (PiB-PET), cortical thickness in the precuneus ascertained by MRI, and hippocampal volume determined by MRI. Cognition was measured using a validated cognitive composite (including DIAN word list test, logical memory delayed recall, digit symbol coding test [total score], and minimental status examination). We based our statistical analysis on univariate and bivariate linear mixed effects models. FINDINGS: In carriers of pathogenic variants, a high amyloid burden at baseline, represented by low CSF Aβ42 (β=–4·28 × 10^{–2} [SE 0·013], p=0·0012), but not high cortical uptake in PiB-PET (β=–5·51 × 10^{–3} [0·011], p=0·63), was the only predictor of an augmented annual rate of subsequent increase in soluble TREM2. Augmented annual rates of increase in soluble TREM2 were associated with a diminished rate of decrease in amyloid deposition, as measured by Aβ42 in CSF (r=0·56 [0·22], p=0·011), in presymptomatic carriers of pathogenic variants, and with diminished annual rate of increase in PiB-PET (r=–0·67 [0·25], p=0·0060) in symptomatic carriers of pathogenic variants. Presymptomatic carriers of pathogenic variants with annual rates of increase in soluble TREM2 lower than the median showed a correlation between enhanced annual rates of increase in p-tau in CSF and augmented annual rates of increase in PiB-PET signal (r=0·45 [0·21], p=0·035), that was not observed in those with rates of increase in soluble TREM2 higher than the median. Furthermore, presymptomatic carriers of pathogenic variants with rates of increase in soluble TREM2 above or below the median had opposite associations between Aβ42 in CSF and PiB-PET uptake when assessed longitudinally. Augmented annual rates of increase in soluble TREM2 in presymptomatic carriers of pathogenic variants correlated with decreased cortical shrinkage in the precuneus (r=0·46 [0·22]), p=0·040) and diminished cognitive decline (r=0·67 [0·22], p=0·0020). INTERPRETATION: Our findings in autosomal dominant Alzheimer's disease position the TREM2 response within the amyloid cascade immediately after the first pathological changes in Aβ aggregation and further support the role of TREM2 on Aβ plaque deposition and compaction. Furthermore, these findings underpin a beneficial effect of TREM2 on Aβ deposition, Aβ-dependent tau pathology, cortical shrinkage, and cognitive decline. Soluble TREM2 could, therefore, be a key marker for clinical trial design and interpretation. Efforts to develop TREM2-boosting therapies are ongoing

    Identification of tissue-specific cell death using methylation patterns of circulating DNA

    Get PDF
    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics

    Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia

    Full text link
    Glutamatergic transmission is an important factor in the development of neuronal death following transient cerebral ischemia. In this investigation the effects of N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists on neuronal damage were studied in rats exposed to 10 min of transient cerebral ischemia induced by bilateral common carotid occlusion combined with hypotension. The animals were treated with a blocker of the ionotropic quisqualate or α-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptor, 2.3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX), given postischemia as an intraperitoneal bolus dose of 30 mg kg-1 followed by an intravenous infusion of 75 μg min-1 for 6 h, or with the noncompetitive NMDA receptor blocker dizocilpine (MK-801) given 1 mg kg-1 i.p. at recirculation and 3 h postischemia, or with the competitive NMDA receptor antagonist DL-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid (CGP 40116), 5 mg kg-1, given intraperitoneally at recirculation. Treatment with NBQX provided a significant reduction of neuronal damage in the hippocampal CA1 area by 44-69%, with the largest relative decrease in the temporal part of the hippocampus. In neocortex a significant decrease in the number of necrotic neurons was also noted. No protection could be seen following postischemic treatment with dizocilpine or CGP 40116. Our data demonstrate that AMPA but not NMDA receptor antagonists decrease neuronal damage following transient severe cerebral ischemia in the rat and that the protection by NBQX may be dependent on the severity of the ischemic insult. We propose that the AMPA receptor-mediated neurotoxicity could be due to ischemia-induced changes in the control mechanisms of AMPA receptor-coupled processes or to changes of AMPA receptor characteristics

    Lack of protection by the N-methyl-D-asparate receptor blocker dizocilpine (MK-801) after transient severe cerebral ischemia in the rat

    Full text link
    Glutamate is an important factor in the mechanisms of neuronal damage following cerebral ischemia. Blockade of one type of glutamate receptor, the N-methyl-D-aspartate (NMDA) receptor, decreases brain infarct size in experimental models of permanent focal ischemia, but protection in models of transient reversible ischemia is ambiguous. We investigated the effect of the noncompetitive NMDA receptor antagonist dizocipiline (MK-801) on neuronal damage in the CA1 region of the rat hippocampus, using two models of reversible cerebral ischemia: 10 or 15 min of bilateral common carotid occlusion combined with hypotension, or 6-8.5 min of cardiac arrest. Histopathologic evaluation of neuronal damage was performed 7 days after the ischemic insults. Thirteen groups of rats (a total of 129 animals) were treated with saline or dizocilpine in single or multiple doses ranging from 0.1 to 5 mg·kg-1, given intravenously or intraperitoneally prior to and/or after the ischemic insult. In none of the dizocilpine-treated groups could neuronal protection be demonstrated in the CA1 region of the septal as well as dorsotemporal hippocampus, compared to a corresponding saline-treated group. We conclude that systemically administered noncompetitive NMDA receptor antagonists do not provide a marked protection against neuronal damage after a transient period of severe forebrain ischemia

    Influence of ovarian hormones on cortical spreading depression and its suppression by L-kynurenine in rat.

    Get PDF
    Migraine is sexually dimorphic and associated in 20-30% of patients with an aura most likely caused by cortical spreading depression (CSD). We have previously shown that systemic L-kynurenine (L-KYN), the precursor of kynurenic acid, suppresses CSD and that this effect depends on the stage of the estrous cycle in female rats. The objectives here are to determine the influence of ovarian hormones on KCl-induced CSD and its suppression after L-KYN by directly modulating estradiol or progesterone levels in ovariectomized rats. Adult female rats were ovariectomized and subcutaneously implanted with silastic capsules filled with progesterone or 17β-estradiol mixed with cholesterol, with cholesterol only or left empty. Two weeks after the ovariectomy/capsule implantation, the animals received an i.p. injection of L-KYN (300 mg/kg) or NaCl as control. Thirty minutes later CSDs were elicited by applying KCl over the occipital cortex and recorded by DC electrocorticogram for 1 hour. The results show that both estradiol and progesterone increase CSD frequency after ovariectomy. The suppressive effect of L-KYN on CSD frequency, previously reported in normal cycling females, is not found anymore after ovariectomy, but reappears after progesterone replacement therapy. Taken together, these results emphasize the complex role of sex hormones on cortical excitability. The CSD increase by estradiol and, more surprisingly, progesterone may explain why clinically migraine with aura appears or worsens during pregnancy or with combined hormonal treatments

    CGS 19755 (Selfotel): A Novel Neuroprotective Agent Against CNS Injury

    Full text link
    The hypothesis that excitoxicity is a mechanism of damage following different types of cerebral injury including global and focal ischemia (34), and head and spinal cord trauma (6,7,9,25) has been supported by numerous findings. During ischemia for example, glutamate neurotoxicity is mediated in part through N-methyl-D-aspartate (NMDA) receptors, since selective antagonists to this receptor protect against hypoxic-ischemic injury (10,35,41). In the last few years, different NMDA antagonists have been developed and tested; they can be divided into competitive and noncompetitive antagonists. Noncompetitive NMDA antagonists are extremely lipophilic and reach high levels in the brain after systemic administration. Various studies have demonstrated that these agents provide neuroprotection against hypoxic-ischemic injury (for review see ref. 29). Many competitive NMDA antagonists are hydrophilic and require direct cerebral administration to obtain high brain levels. Newer competitive NMDA blockers, such as cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS 19755, selfotel), provide neuroprotection against global ischemia, focal ischemia, and trauma when given systemically (2,3,32,33). Selfotel is currently being studied in multicenter safety and efficacy trials for stroke (17) and head trauma (6)
    corecore