244 research outputs found

    UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report

    Full text link
    This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup #25;0}, 2{pi}{sup #25;}0, 3{pi}{sup #25;0}, {eta}#17;, {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4#25;. It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, GâÂÂparity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta}#17;,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta}#17; and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup #4;âÂÂ}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular the "neutron skin" of {sup 208}Pb, which is of great interest to astroparticle physics for determining the properties of neutron stars. Processes of study are coherent and nonâÂÂcoherent #25;0 photoproduction. The Crystal Ball is uniquely suited for these studies because of the large acceptance, good direction and energy resolution and it is an inclusive detector for the #25;{pi}{sup 0} final state and exclusive for background such as 2#25;{pi}{sup 0}

    Magnetic Moments of the Baryon Decuplet in a Relativistic Quark Model

    Full text link
    The magnetic moments of the baryon decuplet are calculated in a relativistic constituent quark model using the light-front formalism. Of particular interest are the magnetic moments of the Ω−\Omega^- and Δ++\Delta^{++} for which new recent experimental measurements are available. Our calculation for the magnetic moment ratio μ(Δ++)/μ(p)\mu(\Delta^{++})/\mu(p) is in excellent agreement with the experimental ratio, while our ratio μ(Ω−)/μ(Λ0)\mu(\Omega^-)/\mu(\Lambda^0) is slightly higher than the experimental ratio.Comment: 10 pages ReVTeX, SLAC-PUB-621

    Ratios of Elastic Scattering of Pions from 3H and 3He

    Full text link
    We have measured the elastic-scattering ratios of normalized yields for charged pions from 3H and 3He in the backward hemisphere. At 180 MeV, we completed the angular distribution begun with our earlier measurements, adding six data points in the angular range of 119 deg to 169 deg in the pi-nucleus center of mass. We also measured an excitation function with data points at 142, 180, 220, and 256 MeV incident pion energy at the largest achievable angle for each energy between 160 deg and 170 deg in the pi-nucleus center of mass. This excitation function corresponds to the energies of our forward-hemisphere studies. The data, taken as a whole, show an apparent role reversal of the two charge-symmetric ratios r1 and r2 in the backward hemisphere. Also, for data > 100 deg we observe a strong dependence on the four-momentum transfer squared (-t) for all of the ratios regardless of pion energy or scattering angle, and we find that the superratio R data match very well with calculations based on the forward-hemisphere data that predicts the value of the difference between the even-nucleon radii of 3H and 3He. Comparisons are also made with recent calculations incorporating different wave functions and double scattering models.Comment: RevTex 8pages, 12 figure file

    Charge Symmetry Breaking in 500 MeV Nucleon-Trinucleon Scattering

    Get PDF
    Elastic nucleon scattering from the 3He and 3H mirror nuclei is examined as a test of charge symmetry violation. The differential cross-sections are calculated at 500 MeV using a microsopic, momentum-space optical potential including the full coupling of two spin 1/2 particles and an exact treatment of the Coulomb force. The charge-symmetry-breaking effects investigated arise from a violation within the nuclear structure, from the p-nucleus Coulomb force, and from the mass-differences of the charge symmetric states. Measurements likely to reveal reliable information are noted.Comment: 5 page
    • …
    corecore