41,308 research outputs found
Heavy Quarkonium Potential Model and the State of Charmonium
A theoretical explanation of the observed splittings among the P~states of
charmonium is given with the use of a nonsingular potential model for heavy
quarkonia. We also show that the recently observed mass difference between the
center of gravity of the states and the state of
does not provide a direct test of the color hyperfine interaction in heavy
quarkonia. Our theoretical value for the mass of the state is in
agreement with the experimental result, and its E1 transition width is
341.8~keV. The mass of the state is predicted to be 3622.3~MeV.Comment: 15 page REVTEX documen
Bc spectroscopy in a quantum-chromodynamic potential model
We have investigated spectroscopy with the use of a
quantum-chromodynamic potential model which was recently used by us for the
light-heavy quarkonia. We give our predictions for the energy levels and the
1 transition widths. We also find, rather surprisingly, that although
is not a light-heavy system, the heavy quark effective theory with the
inclusion of the and corrections is as successful
for as it is for and .Comment: 10 page ReVTeX pape
Quantum-Chromodynamic Potential Model for Light-Heavy Quarkonia and the Heavy Quark Effective Theory
We have investigated the spectra of light-heavy quarkonia with the use of a
quantum-chromodynamic potential model which is similar to that used earlier for
the heavy quarkonia. An essential feature of our treatment is the inclusion of
the one-loop radiative corrections to the quark-antiquark potential, which
contribute significantly to the spin-splittings among the quarkonium energy
levels. Unlike and , the potential for a light-heavy
system has a complicated dependence on the light and heavy quark masses and
, and it contains a spin-orbit mixing term. We have obtained excellent
results for the observed energy levels of , , , and , and
we are able to provide predicted results for many unobserved energy levels. Our
potential parameters for different quarkonia satisfy the constraints of quantum
chromodynamics.
We have also used our investigation to test the accuracy of the heavy quark
effective theory. We find that the heavy quark expansion yields generally good
results for the and energy levels provided that and
corrections are taken into account in the quark-antiquark
interactions. It does not, however, provide equally good results for the energy
levels of and , which indicates that the effective theory can be
applied more accurately to the quark than the quark.Comment: 17 pages of LaTeX. To appear in Physical Review D. Complete
PostScript file is available via WWW at
http://gluon.physics.wayne.edu/wsuhep/jim/heavy.p
Where we stand on structure dependence of ISGMR in the Zr-Mo region: Implications on K_\infty
Isoscalar giant resonances, being the archetypal forms of collective nuclear
behavior, have been studied extensively for decades with the goal of
constraining bulk nuclear properties of the equation of state, as well as for
modeling dynamical behaviors within stellar environments. An important such
mode is the isoscalar electric giant monopole resonance (ISGMR) that can be
understood as a radially symmetric density vibration within the saturated
nuclear volume. The field has a few key open questions, which have been
proposed and remain unresolved. One of the more provocative questions is the
extra high-energy strength in the region, which manifested in
large percentages of the sum rule in Zr and Mo above the
main ISGMR peak. The purpose of this article is to introduce these questions
within the context of experimental investigations into the phenomena in the
zirconium and molybdenum isotopic chains, and to address, via a discussion of
previously published and preliminary results, the implications of recent
experimental efforts on extraction of the nuclear incompressibility from this
data.Comment: 9 pages, 7 figures, invited to be submitted to a special issue of
EPJA honoring Prof. P. F. Bortigno
Crystal structure of [1-(3-chlorophenyl)- 5-hydroxy-3-methyl-1H-pyrazol-4-yl](p-tolyl) methanone
RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.Peer reviewe
N(HI) and jet power/emission in AGNs
Neutral hydrogen (HI) 21 cm absorption has been detected against more and
more powerful radio jets. In this work, based on the Guppta et al. 2006a
sample, we present our preliminary study of the correlations between the HI
column density N(HI) and the jet power, N(HI) versus the low frequency
luminosity at 408MHz, and N(HI) versus the radio luminosity at 1400MHz.Comment: 3 pages, 1 figures, Multiwavelength Variability of Blazars Guangzhou,
China, Sept. 22-24, 2010; will be published by JA
The impact of prior information on estimates of disease transmissibility using Bayesian tools
The basic reproductive number (Râ) and the distribution of the serial interval (SI) are often used to quantify transmission during an infectious disease outbreak. In this paper, we present estimates of Râ and SI from the 2003 SARS outbreak in Hong Kong and Singapore, and the 2009 pandemic influenza A(H1N1) outbreak in South Africa using methods that expand upon an existing Bayesian framework. This expanded framework allows for the incorporation of additional information, such as contact tracing or household data, through prior distributions. The results for the Râ and the SI from the influenza outbreak in South Africa were similar regardless of the prior information (R0 = 1.36-1.46, ÎŒ = 2.0-2.7, ÎŒ = mean of the SI). The estimates of Râ and ÎŒ for the SARS outbreak ranged from 2.0-4.4 and 7.4-11.3, respectively, and were shown to vary depending on the use of contact tracing data. The impact of the contact tracing data was likely due to the small number of SARS cases relative to the size of the contact tracing sample
- âŠ