1,069 research outputs found
Searching for signatures of planet formation in stars with circumstellar debris discs
(Abridged) Tentative correlations between the presence of dusty debris discs
and low-mass planets have been presented. In parallel, detailed chemical
abundance studies have reported different trends between samples of planet and
non-planet hosts. We determine in a homogeneous way the metallicity, and
abundances of a sample of 251 stars including stars with known debris discs,
with debris discs and planets, and only with planets. Stars with debris discs
and planets have the same [Fe/H] behaviour as stars hosting planets, and they
also show a similar -Tc trend. Different behaviour in the -Tc
trend is found between the samples of stars without planets and the samples of
planet hosts. In particular, when considering only refractory elements,
negative slopes are shown in cool giant planet hosts, whilst positive ones are
shown in stars hosting low-mass planets. Stars hosting exclusively close-in
giant planets show higher metallicities and positive -Tc slope. A
search for correlations between the -Tc slopes and the stellar
properties reveals a moderate but significant correlation with the stellar
radius and as well as a weak correlation with the stellar age. The fact that
stars with debris discs and stars with low-mass planets do not show neither
metal enhancement nor a different -Tc trend might indicate a
correlation between the presence of debris discs and the presence of low-mass
planets. We extend results from previous works which reported differences in
the -Tc trends between planet hosts and non hosts. However, these
differences tend to be present only when the star hosts a cool distant planet
and not in stars hosting exclusively low-mass planets.Comment: Accepted for publication in Astronomy and Astrophysic
Neotypification for five names linked to Arenaria (Caryophyllaceae) for the endemic flora of Peru and Bolivia
The names Arenaria mattfeldii, A. pallens, A. peruviana, A. pintaudii, and A. stuebelii (Caryophyllaceae, Arenarieae) from Peru and Bolivia were studied and neotypified based on specimens preserved at B and P
Molecular phylogenetics and morphology reveal the Plettkea lineage including several members of Arenaria and Pycnophyllopsis to be a clade of 21 South American species nested within Stellaria (Caryophyllaceae, Alsineae)
Caryophyllaceae with a cushion-like life form occur with a large number of species at the higher altitudes of the Andes (3500â5000 m) and have evolved convergently in several different lineages. Based on molecular phylogenetic analysis it is shown that members of the former genera Plettkea and Pycnophyllopsis, but also certain species previously classified as Arenaria constitute a subclade nested within the monophyletic genus Stellaria. Both plastid (trnK-matK-psbA + trnL-F) and nuclear (nrITS) trees converged on such a highly supported âPlettkeaâ clade. Morphologically, the members of the âPlettkeaâ subclade of Stellaria are further characterized by reduced to completely absent petals and seeds with a more or less conspicuous tuberculate testa. This clade is described as S. sect. Plettkea (Mattf.) Montesinos & Borsch. Species-level relationships within S. sect. Plettkea are also congruently inferred by plastid and nuclear genomic compartments, with three further sublineages recognized: Altogether, our detailed taxonomic revision showed that the âPlettkeaâ clade in fact constitutes an Andean radiation of 21 species within Stellaria, four of which are described as new to science. Earlier treatments indicated just a few species with a putative placement. The results of this investigation underscore the importance of fieldwork and integrated molecular-morphological approaches to assess the species diversity in Andean plant groups. In addition to the phylogenetic analysis, we provide a taxonomic backbone including all names and types, descriptions and information on distribution and ecology and a key for identification. Regarding the next relatives of the S. sect. Plettkea clade, our plastid trees depict the âNitentesâ clade of Stellaria as sister, whereas nrITS instead suggests a sister group relationship of the âNitentesâ with the speciose âLarbreaeâ clade. Our inferred relationships of major clades further deviate from published molecular trees by indicating an early branching position of the âPetiolaresâ clade
The genus Paronychia (Caryophyllaceae) in South America. Nomenclatural review and taxonomic notes with the description of a new species from North Peru
All the names in Paronychia described from South America are investigated. Five names (P. arbuscula, P. brasiliana subsp. brasiliana var. pubescens, P. coquimbensis, P. hieronymi, and P. mandoniana) are lecto- or neotypified on specimens preserved at GOET, K, LP, and P. The typification of nine names, first proposed by Chaudhri in 1968 as the âholotypeâ are corrected according to Art. 9.10 of ICN. Three second-step typifications (Art. 9.17 of ICN) are proposed for P. camphorosmoides, P. communis, and P. hartwegiana. The following nomenclatural changes are proposed: P. arequipensis comb. et stat. nov. (basionym: P. microphylla subsp. microphylla var. arequepensis), P. compacta nom. nov. pro P. andina (Philippi non Gray; Art. 53.1 of ICN), P. jujuyensis comb. et stat. nov. (basionym: P. hieronymi subsp. hieronymi var. jujuyensis), P. compacta subsp. boliviana comb. nov. (basionym: P. andina subsp. boliviana), and P. compacta subsp. purpurea comb. nov. (basionym: P. andina subsp. purpurea). A new species (P. glabra sp. nov.) is proposed based on our examination of live plants and herbarium specimens. P. johnstonii subsp. johnstonii var. scabrida is synonymized (syn. nov.) with P. johnstonii. Finally, P. argyrocoma subsp. argyrocoma is excluded from South America since it was based on misidentified specimens (deposited at MO) of P. andina subsp. andina. A total of 30 species (43 taxa including subspecies, varieties, subvarieties, and forms) are recognized, highlighting that for some (Paronychia chilensis, P. communis, P. setigera) we provisionally accept Chaudhriâs infraspecific classification, since the high phenotypic variability of these taxa is quite complicated and further investigations need to solve their taxonomy
Herschel observations of the circumstellar environment of the two Herbig Be stars R Mon and PDS27
We report and analyse FIR observations of two Herbig Be stars, R Mon and PDS
27, obtained with Herschel's instruments PACS and SPIRE. We construct SEDs and
derive the infrared excess. We extract line fluxes from the PACS and SPIRE
spectra and construct rotational diagrams in order to estimate the excitation
temperature of the gas. We derive CO, [OI] and [CI] luminosities to determine
physical conditions of the gas, as well as the dominant cooling mechanism. We
confirm that the Herbig Be stars are surrounded by remnants from their parental
clouds, with an IR excess that mainly originates in a disc. In R Mon we detect
[OI], [CI], [CII], CO (26 transitions), water and OH, while in PDS 27 we only
detect [CI] and CO (8 transitions). We attribute the absence of OH and water in
PDS 27 to UV photo-dissociation and photo-evaporation. From the rotational
diagrams, we find several components for CO: we derive 94990 K,
35820 K & 7712 K for R Mon, 9612 K & 314 K for PDS 27 and
258 K & 276 K for their respective compact neighbours. The forsterite
feature at 69m was not detected in either of the sources, probably due to
the lack of (warm) crystalline dust in a flat disc. We find that cooling by
molecules is dominant in the Herbig Be stars, while this is not the case in
Herbig Ae stars where cooling by [OI] dominates. Moreover, we show that in the
Herbig Be star R Mon, outflow shocks are the dominant gas heating mechanism,
while in Herbig Ae stars this is stellar. The outflow of R Mon contributes to
the observed line emission by heating the gas, both in the central spaxel/beam
covering the disc and the immediate surroundings, as well as in those
spaxels/beams covering the parabolic shell around it. PDS 27, a B2 star, has
dispersed a large part of its gas content and/or destroyed molecules; this is
likely given its intense UV field.Comment: Accepted for publication in Astronomy & Astrophysic
Implementing PBIS With Fidelity - One District\u27s Journey
Gainesville City School System (GCSS) started its journey with PBIS in 2008. In 2015, GCSS renewed its sense of purpose and dedication to PBIS. Come learn about our journey to become a PBIS district committed to implementation with fidelity while redeveloping and recommitting ourselves to a common vision, language, and overall quality PBIS experience. District-wide and school-wide PBIS requires systemic support in order to improve use of resources, implementation, and organization. The supportive contexts we will discuss include parents, community agencies, bus transportation, and basic district and school level supports so that we are working collaboratively to âBe the ONE: Ready, Respectful, Responsible, Role Model.
Dynamical stabilization of matter-wave solitons revisited
We consider dynamical stabilization of Bose-Einstein condensates (BEC) by
time-dependent modulation of the scattering length. The problem has been
studied before by several methods: Gaussian variational approximation, the
method of moments, method of modulated Townes soliton, and the direct averaging
of the Gross-Pitaevskii (GP) equation. We summarize these methods and find that
the numerically obtained stabilized solution has different configuration than
that assumed by the theoretical methods (in particular a phase of the
wavefunction is not quadratic with ). We show that there is presently no
clear evidence for stabilization in a strict sense, because in the numerical
experiments only metastable (slowly decaying) solutions have been obtained. In
other words, neither numerical nor mathematical evidence for a new kind of
soliton solutions have been revealed so far. The existence of the metastable
solutions is nevertheless an interesting and complicated phenomenon on its own.
We try some non-Gaussian variational trial functions to obtain better
predictions for the critical nonlinearity for metastabilization but
other dynamical properties of the solutions remain difficult to predict
- âŠ