3,050 research outputs found

    The role of finite kinematic bounds in the induced gluon emission from fast quarks in a finite size quark-gluon plasma

    Full text link
    We study the influence of finite kinematic boundaries on the induced gluon radiation from a fast quark in a finite size quark-gluon plasma. The calculations are carried out for fixed and running coupling constant. We find that for running coupling constant the kinematic correction to the radiative energy loss is small for quark energy larger than about 5 GeV. Our results differ both analytically and numerically from that obtained by the GLV group [6]. The effect of the kinematic cut-offs is considerably smaller than reported in [6].Comment: 11 pages, 4 figure

    Anomalous mass dependence of radiative quark energy loss in a finite-size quark-gluon plasma

    Full text link
    We demonstrate that for a finite-size quark-gluon plasma the induced gluon radiation from heavy quarks is stronger than that for light quarks when the gluon formation length becomes comparable with (or exceeds) the size of the plasma. The effect is due to oscillations of the light-cone wave function for the in-medium qgqq\to gq transition. The dead cone model by Dokshitzer and Kharzeev neglecting quantum finite-size effects is not valid in this regime. The finite-size effects also enhance the photon emission from heavy quarks.Comment: 8 pages, 3 figure

    Induced photon emission from quark jets in ultrarelativistic heavy-ion collisions

    Full text link
    We study the induced photon bremsstrahlung from a fast quark produced in AA-collisions due to multiple scattering in quark-gluon plasma. For RHIC and LHC conditions the induced photon spectrum is sharply peaked at photon energy close to the initial quark energy. In this region the contribution of the induced radiation to the photon fragmentation function exceeds the ordinary vacuum radiation. Contrary to previous analyses our results show that at RHIC and LHC energies the final-state interaction effects in quark-gluon plasma do not suppress the direct photon production, and even may enhance it at p_{T} about 5-15 GeV.Comment: 11 pages, 4 figure

    Radiative parton energy loss and jet quenching in high-energy heavy-ion collisions

    Full text link
    We study within the light-cone path integral approach [3] the effect of the induced gluon radiation on high-p_{T} hadrons in high-energy heavy-ion collisions. The induced gluon spectrum is represented in a new form which is convenient for numerical simulations. For the first time, computations are performed with a realistic parametrization of the dipole cross section. The results are in reasonable agreement with suppression of high-p_{T} hadrons in Au+Au collisions at \sqrt{s}=200 GeV observed at RHIC.Comment: 12 pages, 3 epsi figures. Typos correcte

    Fully quantum treatment of the Landau--Pomeranchuk--Migdal effect in QED and QCD

    Get PDF
    For the first time a rigorous quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD is given. The rate of photon (gluon) radiation by an electron (quark) in medium is expressed through the Green's function of a two-dimensional Schr\"odinger equation with an imaginary potential. In QED this potential is proportional to the dipole cross section for scattering of e+ee^{+}e^{-} pair off an atom, in QCD it is proportional to the cross section of interaction with color centre of the color singlet quark-antiquark-gluon system.Comment: E-mail: [email protected], [email protected]

    Direct calculation of the triple-pomeron coupling for diffractive DIS and real photoproduction

    Get PDF
    We present a unified direct calculation of the triple-pomeron coupling A_{3\Pom}(Q^{2}) for diffractive real photoproduction (Q2=0Q^{2}=0) and deep inelastic scattering at large Q2Q^{2} in the framework of the dipole approach to the generalized BFKL pomeron. The small phenomenological value of A_{3\Pom}(0)\approx 0.16\,GeV2^{2}, which was a mystery, is related to the small correlation radius Rc0.3R_{c}\approx 0.3\,fm for the perturbative gluons. We confirm the early expectations of weak Q2Q^{2} dependence of the dimensionfull coupling A_{3\Pom}(Q^{2}) and predict that it rises by the factor 1.6\sim 1.6 from real photoproduction to deep inelastic scattering.Comment: 14 pages, 1 figure (request from [email protected]), Juelich preprint KFA-IKP(Th)-1994-3

    Parton energy loss in an expanding quark-gluon plasma: Radiative vs collisional

    Full text link
    We perform a comparison of the radiative and collisional parton energy losses in an expanding quark-gluon plasma. The radiative energy loss is calculated within the light-cone path integral approach. The collisional energy loss is calculated using the Bjorken method with an accurate treatment of the binary collision kinematics. Our numerical results demonstrate that for RHIC and LHC conditions the collisional energy loss is relatively small in comparison to the radiative one. We find an enhancement of the heavy quark radiative energy loss as compared to that of the light quarks at high energies.Comment: 13 pages, 3 figure

    Charged Current Diffractive Structure Functions

    Get PDF
    We present our study of the diffraction in charged current DIS. We analyse the perturbatively tractable excitation of heavy quarks, emphasizing the peculiarities of the Regge factorization breaking in excitation of open charm.Comment: Proceeding of LISHEP98 workshop on diffractive physic

    Jet quenching with running coupling including radiative and collisional energy losses

    Full text link
    We calculate the nuclear modification factor for RHIC and LHC conditions accounting for the radiative and collisional parton energy loss with the running coupling constant.We find that the RHIC data can be explained both in the scenario with the chemically equilibrium quark-gluon plasma and purely gluonic plasma with slightly different thermal suppression of the coupling constant. The role of the parton energy gain due to gluon absorption is also investigated. Our results show that the energy gain gives negligible effect.Comment: 11 pages, 3 figure
    corecore