739 research outputs found

    Enhancement of the Hall-Lorenz number in optimally doped YBa2Cu3O_7-d

    Full text link
    Electronic heat transport in the normal state of a high-quality single crystal of optimally-doped superconductor YBa2Cu3O6.95 was studied by measurements of longitudinal and transverse transport coefficients. For the temperature range from 100 to 300 K, the Hall-Lorenz number (Lxy) depends weakly on temperature and is about two times larger than the Sommerfeld value of the Lorenz number Lo = (pi^2)/3. Our results can be interpreted using a Fermi liquid model when effects of the pseudogap that opens at the Fermi level are included. However, we find that the bipolaron model can also explain both the enhanced value and the weak temperature dependence of the Hall-Lorenz number.Comment: Accepted for publication in Europhysics Letters; 16 pages, 2 figure

    Expenditure-based segmentation and visitor profiling at The Quays in Salford, UK

    Get PDF
    There is a substantial body of literature relating to tourism’s economic impact at the macro level, but less is known about tourist expenditure at a micro scale. This paper reports findings from a survey of day-visitor expenditure by category at The Quays in Salford, UK. Expenditure is influenced strongly by the visitor’s age, frequency of visitation and visit motivation. Heavy, medium and light expenditure segments and associated profiles are identified. ‘Heavy spenders’ are more likely to be female, in a family group and have shopping as the main motivation for the visit. The implications of the findings are discussed

    Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}

    Full text link
    Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied during room temperature annealing following heat treatment. The superconducting T_c, dc resistivity, and low-energy optical conductivity recover slowly, implying a long relaxation time for the carrier density. Short relaxation times are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon -- and the charge transfer band. Monte Carlo simulations suggest that these two relaxation rates are related to two length scales corresponding to local oxygen ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure

    Photoluminescence spectroscopy of bandgap reduction in dilute InNAs alloys

    Get PDF
    Photoluminescence (PL) has been observed from dilute InNxAs1–x epilayers grown by molecular-beam epitaxy. The PL spectra unambiguously show band gap reduction with increasing N content. The variation of the PL spectra with temperature is indicative of carrier detrapping from localized to extended states as the temperature is increased. The redshift of the free exciton PL peak with increasing N content and temperature is reproduced by the band anticrossing model, implemented via a (5×5) k·p Hamiltonian

    Band anticrossing in GaNxSb1–x

    Get PDF
    Fourier transform infrared absorption measurements are presented from the dilute nitride semiconductor GaNSb with nitrogen incorporations between 0.2% and 1.0%. The divergence of transitions from the valence band to E– and E+ can be seen with increasing nitrogen incorporation, consistent with theoretical predictions. The GaNSb band structure has been modeled using a five-band k·p Hamiltonian and a band anticrossing fitting has been obtained using a nitrogen level of 0.78 eV above the valence band maximum and a coupling parameter of 2.6 eV

    Surface crossover exponent for branched polymers in two dimensions

    Full text link
    Transfer-matrix methods on finite-width strips with free boundary conditions are applied to lattice site animals, which provide a model for randomly branched polymers in a good solvent. By assigning a distinct fugacity to sites along the strip edges, critical properties at the special (adsorption) and ordinary transitions are assessed. The crossover exponent at the adsorption point is estimated as ϕ=0.505±0.015\phi = 0.505 \pm 0.015, consistent with recent predictions that ϕ=1/2\phi = 1/2 exactly for all space dimensionalities.Comment: 10 pages, LaTeX with Institute of Physics macros, to appear in Journal of Physics

    Transport Anomalies and the Role of Pseudogap in the "60-K Phase" of YBa_{2}Cu_{3}O_{7-\delta}

    Full text link
    We report the result of our accurate measurements of the a- and b-axis resistivity, Hall coefficient, and the a-axis thermopower in untwinned YBa_{2}Cu_{3}O_{y} single crystals in a wide range of doping. It is found that both the a-axis resistivity and the Hall conductivity show anomalous dependences on the oxygen content y in the "60-K phase" below the pseudogap temperature T^*. The complete data set enables us to narrow down the possible pictures of the 60-K phase, with which we discuss a peculiar role of the pseudogap in the charge transport.Comment: 4 pages, 4 figures, accepted for publication in PR

    On surface properties of two-dimensional percolation clusters

    Full text link
    The two-dimensional site percolation problem is studied by transfer-matrix methods on finite-width strips with free boundary conditions. The relationship between correlation-length amplitudes and critical indices, predicted by conformal invariance, allows a very precise determination of the surface decay-of-correlations exponent, ηs=0.6664±0.0008\eta_s = 0.6664 \pm 0.0008, consistent with the analytical value ηs=2/3\eta_s = 2/3. It is found that a special transition does not occur in the case, corroborating earlier series results. At the ordinary transition, numerical estimates are consistent with the exact value ys=−1y_s = -1 for the irrelevant exponent.Comment: 8 pages, LaTeX with Institute of Physics macros, to appear in Journal of Physics
    • …
    corecore