374 research outputs found

    Library Design in Combinatorial Chemistry by Monte Carlo Methods

    Full text link
    Strategies for searching the space of variables in combinatorial chemistry experiments are presented, and a random energy model of combinatorial chemistry experiments is introduced. The search strategies, derived by analogy with the computer modeling technique of Monte Carlo, effectively search the variable space even in combinatorial chemistry experiments of modest size. Efficient implementations of the library design and redesign strategies are feasible with current experimental capabilities.Comment: 5 pages, 3 figure

    Limnogeological studies of maar lake Ranu Klindungan, East Java, Indonesia

    No full text
    Ranu Klindungan is a lake at the northern lowlands of East Java close to the northern slope of the Tengger Caldera. Outcrops of phreatomagmatic base surge deposits at the inner southern crater slope indicate that the lake is situated in a maar crater. The lake has a surface of 2.1 km2 and a maximum depth of 126 m. Details to the morphometry are given. Groundwater inflow must be high. The lake is oligomictic and eutrophicated with a shallow epilimnion and a large anoxic hypolimnion. Mn, Fe, and TP have distinct peaks at the upper hypolimnion, probably caused by the groundwater inflow. Profundal sediments of Ranu Klindungan consist of carbonaceous diatom-gyttja and frequent turbidites. Often the fine layered sediments reveal a distinct cyclicity of layers of diatoms, carbonate and finally terrigenous material. Probably the diatom and carbonate layers represent the dry season (June-October), whereas the terrigenous layer is deposited by distal turbidites during the rain season (November-May). We interpret these cycles as varves. Despite tropical weathering, silt-sized minerals in terrigenous layers are mainly fresh feldspars, which points to rapid transport and embedding of these components. Thicker intraclast-turbidites may be associated with strong precipitation events during the rain season. The diatom record confirms this hypothesis: diatom layers are rich in complete valves of planktonic forms, whereas in the terrigenous layers few, mostly broken, valves of littoral species occur. The high proportion of turbidites contributes to the near-horizontal profundal lake bottom

    Photosensitizer Drug Delivery via an Optical Fiber

    Get PDF
    : An optical fiber has been developed with a maneuverable miniprobe tip that sparges O2 gas and photodetaches pheophorbide (sensitizer) molecules. Singlet oxygen is produced at the probe tip surface which reacts with an alkene spacer group releasing sensitizer upon fragmentation of a dioxetane intermediate. Optimal sensitizer photorelease occurred when the probe tip was loaded with 60 nmol sensitizer, where crowding of the pheophorbide molecules and self-quenching were kept to a minimum. The fiber optic tip delivered pheophorbide molecules and singlet oxygen to discrete locations. The 60 nmol sensitizer was delivered into petrolatum; however, sensitizer release was less efficient in toluene-d8 (3.6 nmol) where most had remained adsorbed on the probe tip, even after the covalent alkene spacer bond had been broken. The results open the door to a new area of fiber optic-guided sensitizer delivery for the potential photodynamic therapy of hypoxic structures requiring cytotoxic control

    In Vitro Selection of a DNA-Templated Small-Molecule Library Reveals a Class of Macrocyclic Kinase Inhibitors

    Get PDF
    DNA-templated organic synthesis enables the translation of DNA sequences into synthetic small-molecule libraries suitable for in vitro selection. Previously, we described the DNA-templated multistep synthesis of a 13 824-membered small-molecule macrocycle library. Here, we report the discovery of small molecules that modulate the activity of kinase enzymes through the in vitro selection of this DNA-templated small-molecule macrocycle library against 36 biomedically relevant protein targets. DNA encoding selection survivors was amplified by PCR and identified by ultra-high-throughput DNA sequencing. Macrocycles corresponding to DNA sequences enriched upon selection against several protein kinases were synthesized on a multimilligram scale. In vitro assays revealed that these macrocycles inhibit (or activate) the kinases against which they were selected with IC50 values as low as 680 nM. We characterized in depth a family of macrocycles enriched upon selection against Src kinase, and showed that inhibition was highly dependent on the identity of macrocycle building blocks as well as on backbone conformation. Two macrocycles in this family exhibited unusually strong Src inhibition selectivity even among kinases closely related to Src. One macrocycle was found to activate, rather than inhibit, its target kinase, VEGFR2. Taken together, these results establish the use of DNA-templated synthesis and in vitro selection to discover small molecules that modulate enzyme activities, and also reveal a new scaffold for selective ATP-competitive kinase inhibition.Chemistry and Chemical Biolog

    Photopatterned antibodies for selective cell attachment

    Get PDF
    We present a phototriggerable system that allows for the spatiotemporal controlled attachment of selected cell types to a biomaterial using immobilized antibodies that specifically target individual cell phenotypes.o-Nitrobenzyl caged biotin was used to functionalize chitosan membranes and mediate site-specific coupling of streptavidin and biotinylated antibodies after light activation. The ability of this system to capture and immobilize specific cells on a surface was tested using endothelial-specific biotinylated antibodies and nonspecific ones as controls. Homogeneous patterned monolayers of human umbilical vein endothelial cells were obtained on CD31-functionalized surfaces. This is a simple and generic approach that is applicable to other ligands, materials, and cell types and shows the flexibility of caged ligands to trigger and control the interaction between cells and biomaterials.We thank Martina Knecht (MPIP) for help with the synthesis of caged biotin and Dr. Ron Unger and Prof. C. J. Kirkpatrick (University Clinic Mainz, RepairLab) for providing HUVECs. C.A.C. acknowledges funding support from the Portuguese Foundation for Science and Technology (FCT) (fellowship SFRH/BD/61390/2009) and from the International Max-Planck Research School in Mainz. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. REGPOT-CT2012-316331-POLARIS

    Fighting Cartels: Some Economics of Council Regulation (EC) 1/2003

    Full text link
    This paper investigates the effectiveness of the new Council Regulation (EC) 1/2003 which replaces the mandatory notification and authorization system by a legal exception system. Effectiveness is operationalized via the two subcriteria compliance to Art. 81 EC Treaty and the probabilities of type I and type II errors committed by the European Commission. We identify four different types of Perfect Bayesian Nash Equilibria: fullcompliance, zero-compliance, positive-compliance and full-deterrence. We show that the Commission can, in principle, hit the full-compliance equilibrium, where the cartelizing firms fully obey the requirements of Art 81(3) EC Treaty and both error probabilities are zero

    DNA Microarrays for Identifying Fishes

    Get PDF
    In many cases marine organisms and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. In this study, a DNA microarray has been developed to be able to investigate its potential as a tool for the identification of fish species from European seas based on mitochondrial 16S rDNA sequences. Eleven commercially important fish species were selected for a first prototype. Oligonucleotide probes were designed based on the 16S rDNA sequences obtained from 230 individuals of 27 fish species. In addition, more than 1200 sequences of 380 species served as sequence background against which the specificity of the probes was tested in silico. Single target hybridisations with Cy5-labelled, PCR-amplified 16S rDNA fragments from each of the 11 species on microarrays containing the complete set of probes confirmed their suitability. True-positive, fluorescence signals obtained were at least one order of magnitude stronger than false-positive cross-hybridisations. Single nontarget hybridisations resulted in cross-hybridisation signals at approximately 27% of the cases tested, but all of them were at least one order of magnitude lower than true-positive signals. This study demonstrates that the 16S rDNA gene is suitable for designing oligonucleotide probes, which can be used to differentiate 11 fish species. These data are a solid basis for the second step to create a “Fish Chip” for approximately 50 fish species relevant in marine environmental and fisheries research, as well as control of fisheries products
    corecore