42 research outputs found
Meixner Wavelet Transform: A Tool for Studying Stationary Discrete-Time Stochastic Processes
A general approach to analyzing discrete stochastic processes in the context of spectral analysis in the Laplace domain is considered. It is shown that a multichannel algorithm, which may be used for determining a discrete Laplace transform of the correlation function corresponding to a stationary discrete-time stochastic process, may be designed on the basis of Meixner wavelets.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45795/1/11175_2004_Article_463362.pd
Theory of Laplace Analysis of Non-Gaussian Noise
An algorithm for directly calculating third-order noise operation spectra, which includes no evaluation of the third-order correlation function as a preliminary stage, is found. For the Ershler–Randles circuit, an expression is found, which links bispectra of the equilibrium electrode potential fluctuation determined in the imaginary and real axes of the Laplace plane. Advantages of using the Laplace space in studies of the fine non-Gaussian structure of random time series are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45797/1/11175_2004_Article_491780.pd
Strongly nonlinear dynamics of electrolytes in large ac voltages
We study the response of a model micro-electrochemical cell to a large ac
voltage of frequency comparable to the inverse cell relaxation time. To bring
out the basic physics, we consider the simplest possible model of a symmetric
binary electrolyte confined between parallel-plate blocking electrodes,
ignoring any transverse instability or fluid flow. We analyze the resulting
one-dimensional problem by matched asymptotic expansions in the limit of thin
double layers and extend previous work into the strongly nonlinear regime,
which is characterized by two novel features - significant salt depletion in
the electrolyte near the electrodes and, at very large voltage, the breakdown
of the quasi-equilibrium structure of the double layers. The former leads to
the prediction of "ac capacitive desalination", since there is a time-averaged
transfer of salt from the bulk to the double layers, via oscillating diffusion
layers. The latter is associated with transient diffusion limitation, which
drives the formation and collapse of space-charge layers, even in the absence
of any net Faradaic current through the cell. We also predict that steric
effects of finite ion sizes (going beyond dilute solution theory) act to
suppress the strongly nonlinear regime in the limit of concentrated
electrolytes, ionic liquids and molten salts. Beyond the model problem, our
reduced equations for thin double layers, based on uniformly valid matched
asymptotic expansions, provide a useful mathematical framework to describe
additional nonlinear responses to large ac voltages, such as Faradaic
reactions, electro-osmotic instabilities, and induced-charge electrokinetic
phenomena.Comment: 30 pages, 17 eps-figures, RevTe
Diffuse-Charge Dynamics in Electrochemical Systems
The response of a model micro-electrochemical system to a time-dependent
applied voltage is analyzed. The article begins with a fresh historical review
including electrochemistry, colloidal science, and microfluidics. The model
problem consists of a symmetric binary electrolyte between parallel-plate,
blocking electrodes which suddenly apply a voltage. Compact Stern layers on the
electrodes are also taken into account. The Nernst-Planck-Poisson equations are
first linearized and solved by Laplace transforms for small voltages, and
numerical solutions are obtained for large voltages. The ``weakly nonlinear''
limit of thin double layers is then analyzed by matched asymptotic expansions
in the small parameter , where is the
screening length and the electrode separation. At leading order, the system
initially behaves like an RC circuit with a response time of
(not ), where is the ionic diffusivity, but nonlinearity
violates this common picture and introduce multiple time scales. The charging
process slows down, and neutral-salt adsorption by the diffuse part of the
double layer couples to bulk diffusion at the time scale, . In the
``strongly nonlinear'' regime (controlled by a dimensionless parameter
resembling the Dukhin number), this effect produces bulk concentration
gradients, and, at very large voltages, transient space charge. The article
concludes with an overview of more general situations involving surface
conduction, multi-component electrolytes, and Faradaic processes.Comment: 10 figs, 26 pages (double-column), 141 reference
Search for the Radiative Capture d+d->^4He+\gamma Reaction from the dd\mu Muonic Molecule State
A search for the muon catalyzed fusion reaction dd --> ^4He +\gamma in the
dd\mu muonic molecule was performed using the experimental \mu CF installation
TRITON and NaI(Tl) detectors for \gamma-quanta. The high pressure target filled
with deuterium at temperatures from 85 K to 800 K was exposed to the negative
muon beam of the JINR phasotron to detect \gamma-quanta with energy 23.8 MeV.
The first experimental estimation for the yield of the radiative deuteron
capture from the dd\mu state J=1 was obtained at the level n_{\gamma}\leq
2\times 10^{-5} per one fusion.Comment: 9 pages, 3 Postscript figures, submitted to Phys. At. Nuc