14,655 research outputs found
HepForge: A lightweight development environment for HEP software
Setting up the infrastructure to manage a software project can become a task
as significant writing the software itself. A variety of useful open source
tools are available, such as Web-based viewers for version control systems,
"wikis" for collaborative discussions and bug-tracking systems, but their use
in high-energy physics, outside large collaborations, is insubstantial.
Understandably, physicists would rather do physics than configure project
management tools.
We introduce the CEDAR HepForge system, which provides a lightweight
development environment for HEP software. Services available as part of
HepForge include the above-mentioned tools as well as mailing lists, shell
accounts, archiving of releases and low-maintenance Web space. HepForge also
exists to promote best-practice software development methods and to provide a
central repository for re-usable HEP software and phenomenology codes.Comment: 3 pages, 0 figures. To be published in proceedings of CHEP06. Refers
to the HepForge facility at http://hepforge.cedar.ac.u
HepData and JetWeb: HEP data archiving and model validation
The CEDAR collaboration is extending and combining the JetWeb and HepData
systems to provide a single service for tuning and validating models of
high-energy physics processes. The centrepiece of this activity is the fitting
by JetWeb of observables computed from Monte Carlo event generator events
against their experimentally determined distributions, as stored in HepData.
Caching the results of the JetWeb simulation and comparison stages provides a
single cumulative database of event generator tunings, fitted against a wide
range of experimental quantities. An important feature of this integration is a
family of XML data formats, called HepML.Comment: 4 pages, 0 figures. To be published in proceedings of CHEP0
Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K
We study the spin and orbital dynamics of single nitrogen-vacancy (NV)
centers in diamond between room temperature and 700 K. We find that the ability
to optically address and coherently control single spins above room temperature
is limited by nonradiative processes that quench the NV center's
fluorescence-based spin readout between 550 and 700 K. Combined with electronic
structure calculations, our measurements indicate that the energy difference
between the 3E and 1A1 electronic states is approximately 0.8 eV. We also
demonstrate that the inhomogeneous spin lifetime (T2*) is temperature
independent up to at least 625 K, suggesting that single NV centers could be
applied as nanoscale thermometers over a broad temperature range.Comment: 8 pages, 5 figures, and 14 pages of supplemental material with
additional figures. Title change and minor revisions from previous version.
DMT and DJC contributed equally to this wor
Discriminating spin through quantum interference
Many of the proposed solutions to the hierarchy and naturalness problems
postulate new `partner' fields to the standard model particles. Determining the
spins of these new particles will be critical in distinguishing among the
various possible SM extensions, yet proposed methods rely on the underlying
models. We propose a new model-independent method for spin measurements which
takes advantage of quantum interference among helicity states. We demonstrate
that this method will be able to discriminate scalar particles from higher spin
states at the ILC, and discuss application to higher spins and possible uses at
the LHC.Comment: 11 pages, 11 figure
Stable Frank-Kasper phases of self-assembled, soft matter spheres
Single molecular species can self-assemble into Frank Kasper (FK) phases,
finite approximants of dodecagonal quasicrystals, defying intuitive notions
that thermodynamic ground states are maximally symmetric. FK phases are
speculated to emerge as the minimal-distortional packings of space-filling
spherical domains, but a precise quantitation of this distortion and how it
affects assembly thermodynamics remains ambiguous. We use two complementary
approaches to demonstrate that the principles driving FK lattice formation in
diblock copolymers emerge directly from the strong-stretching theory of
spherical domains, in which minimal inter-block area competes with minimal
stretching of space-filling chains. The relative stability of FK lattices is
studied first using a diblock foam model with unconstrained particle volumes
and shapes, which correctly predicts not only the equilibrium {\sigma} lattice,
but also the unequal volumes of the equilibrium domains. We then provide a
molecular interpretation for these results via self-consistent field theory,
illuminating how molecular stiffness regulates the coupling between
intra-domain chain configurations and the asymmetry of local packing. These
findings shed new light on the role of volume exchange on the formation of
distinct FK phases in copolymers, and suggest a paradigm for formation of FK
phases in soft matter systems in which unequal domain volumes are selected by
the thermodynamic competition between distinct measures of shape asymmetry.Comment: 40 pages, 22 figure
Pfaffian representations of cubic surfaces
Let K be a field of characteristic zero. We describe an algorithm which
requires a homogeneous polynomial F of degree three in K[x_0,x_1,x_2,x_3] and a
zero A of F in P^3_K and ensures a linear pfaffian representation of V(F) with
entries in K[x_0,x_1,x_2,x_3], under mild assumptions on F and A. We use this
result to give an explicit construction of (and to prove the existence of) a
linear pfaffian representation of V(F), with entries in K'[x_0,x_1,x_2,x_3],
being K' an algebraic extension of K of degree at most six. An explicit example
of such a construction is given.Comment: 17 pages. Expanded with some remarks. Published with minor
corrections in Geom. Dedicat
Dark Matter and Dark Radiation
We explore the feasibility and astrophysical consequences of a new long-range
U(1) gauge field ("dark electromagnetism") that couples only to dark matter,
not to the Standard Model. The dark matter consists of an equal number of
positive and negative charges under the new force, but annihilations are
suppressed if the dark matter mass is sufficiently high and the dark
fine-structure constant is sufficiently small. The correct relic
abundance can be obtained if the dark matter also couples to the conventional
weak interactions, and we verify that this is consistent with particle-physics
constraints. The primary limit on comes from the demand that the
dark matter be effectively collisionless in galactic dynamics, which implies
for TeV-scale dark matter. These values are
easily compatible with constraints from structure formation and primordial
nucleosynthesis. We raise the prospect of interesting new plasma effects in
dark matter dynamics, which remain to be explored.Comment: 14 pages, 6 figures Updated equations and figure
- …