14,655 research outputs found

    HepForge: A lightweight development environment for HEP software

    Get PDF
    Setting up the infrastructure to manage a software project can become a task as significant writing the software itself. A variety of useful open source tools are available, such as Web-based viewers for version control systems, "wikis" for collaborative discussions and bug-tracking systems, but their use in high-energy physics, outside large collaborations, is insubstantial. Understandably, physicists would rather do physics than configure project management tools. We introduce the CEDAR HepForge system, which provides a lightweight development environment for HEP software. Services available as part of HepForge include the above-mentioned tools as well as mailing lists, shell accounts, archiving of releases and low-maintenance Web space. HepForge also exists to promote best-practice software development methods and to provide a central repository for re-usable HEP software and phenomenology codes.Comment: 3 pages, 0 figures. To be published in proceedings of CHEP06. Refers to the HepForge facility at http://hepforge.cedar.ac.u

    HepData and JetWeb: HEP data archiving and model validation

    Get PDF
    The CEDAR collaboration is extending and combining the JetWeb and HepData systems to provide a single service for tuning and validating models of high-energy physics processes. The centrepiece of this activity is the fitting by JetWeb of observables computed from Monte Carlo event generator events against their experimentally determined distributions, as stored in HepData. Caching the results of the JetWeb simulation and comparison stages provides a single cumulative database of event generator tunings, fitted against a wide range of experimental quantities. An important feature of this integration is a family of XML data formats, called HepML.Comment: 4 pages, 0 figures. To be published in proceedings of CHEP0

    Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K

    Full text link
    We study the spin and orbital dynamics of single nitrogen-vacancy (NV) centers in diamond between room temperature and 700 K. We find that the ability to optically address and coherently control single spins above room temperature is limited by nonradiative processes that quench the NV center's fluorescence-based spin readout between 550 and 700 K. Combined with electronic structure calculations, our measurements indicate that the energy difference between the 3E and 1A1 electronic states is approximately 0.8 eV. We also demonstrate that the inhomogeneous spin lifetime (T2*) is temperature independent up to at least 625 K, suggesting that single NV centers could be applied as nanoscale thermometers over a broad temperature range.Comment: 8 pages, 5 figures, and 14 pages of supplemental material with additional figures. Title change and minor revisions from previous version. DMT and DJC contributed equally to this wor

    Discriminating spin through quantum interference

    Full text link
    Many of the proposed solutions to the hierarchy and naturalness problems postulate new `partner' fields to the standard model particles. Determining the spins of these new particles will be critical in distinguishing among the various possible SM extensions, yet proposed methods rely on the underlying models. We propose a new model-independent method for spin measurements which takes advantage of quantum interference among helicity states. We demonstrate that this method will be able to discriminate scalar particles from higher spin states at the ILC, and discuss application to higher spins and possible uses at the LHC.Comment: 11 pages, 11 figure

    Stable Frank-Kasper phases of self-assembled, soft matter spheres

    Full text link
    Single molecular species can self-assemble into Frank Kasper (FK) phases, finite approximants of dodecagonal quasicrystals, defying intuitive notions that thermodynamic ground states are maximally symmetric. FK phases are speculated to emerge as the minimal-distortional packings of space-filling spherical domains, but a precise quantitation of this distortion and how it affects assembly thermodynamics remains ambiguous. We use two complementary approaches to demonstrate that the principles driving FK lattice formation in diblock copolymers emerge directly from the strong-stretching theory of spherical domains, in which minimal inter-block area competes with minimal stretching of space-filling chains. The relative stability of FK lattices is studied first using a diblock foam model with unconstrained particle volumes and shapes, which correctly predicts not only the equilibrium {\sigma} lattice, but also the unequal volumes of the equilibrium domains. We then provide a molecular interpretation for these results via self-consistent field theory, illuminating how molecular stiffness regulates the coupling between intra-domain chain configurations and the asymmetry of local packing. These findings shed new light on the role of volume exchange on the formation of distinct FK phases in copolymers, and suggest a paradigm for formation of FK phases in soft matter systems in which unequal domain volumes are selected by the thermodynamic competition between distinct measures of shape asymmetry.Comment: 40 pages, 22 figure

    Pfaffian representations of cubic surfaces

    Full text link
    Let K be a field of characteristic zero. We describe an algorithm which requires a homogeneous polynomial F of degree three in K[x_0,x_1,x_2,x_3] and a zero A of F in P^3_K and ensures a linear pfaffian representation of V(F) with entries in K[x_0,x_1,x_2,x_3], under mild assumptions on F and A. We use this result to give an explicit construction of (and to prove the existence of) a linear pfaffian representation of V(F), with entries in K'[x_0,x_1,x_2,x_3], being K' an algebraic extension of K of degree at most six. An explicit example of such a construction is given.Comment: 17 pages. Expanded with some remarks. Published with minor corrections in Geom. Dedicat

    Dark Matter and Dark Radiation

    Get PDF
    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ("dark electromagnetism") that couples only to dark matter, not to the Standard Model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark matter mass is sufficiently high and the dark fine-structure constant α^\hat\alpha is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on α^\hat\alpha comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies α^≲10−4\hat\alpha \lesssim 10^{-4} for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark matter dynamics, which remain to be explored.Comment: 14 pages, 6 figures Updated equations and figure
    • …
    corecore