302 research outputs found

    Ferroelectric properties of charge-ordered alpha-(BEDT-TTF)2I3

    Get PDF
    A detailed investigation of the out-of-plane electrical properties of charge-ordered alpha-(BEDT-TTF)2I3 provides clear evidence for ferroelectricity. Similar to multiferroic alpha-(BEDT-TTF)2Cu[N(CN)2]Cl, the polar order in this material is ascribed to the occurrence of bond- and site-centered charge order. Dielectric response typical for relaxor ferroelectricity is found deep in the charge-ordered state. We suggest an explanation in terms of the existence of polar and nonpolar stacks of the organic molecules in this material, preventing long-range ferroelectricity. The results are discussed in relation to the formation or absence of electronic polar order in related charge-transfer salts.Comment: 8 pages, 4 figures. Revised version as accepted for publication in Phys. Rev.

    Dielectric behavior of Copper Tantalum Oxide

    Full text link
    A thorough investigation of the dielectric properties of Cu2Ta4O12, a material crystallizing in a pseudo-cubic, perovskite-derived structure is presented. We measured the dielectric constant and conductivity of single crystals in an exceptionally broad frequency range up to GHz frequencies and at temperatures from 25 - 500 K. The detected dielectric constant is unusually high (reaching values up to 105) and almost constant in a broad frequency and temperature range. Cu2Ta4O12 possesses a crystal structure similar to CaCu3Ti4O12, the compound for which such an unusually high dielectric constant was first observed. An analysis of the results using a simple equivalent circuit and measurements with different types of contact revealed that extrinsic interfacial polarization effects, derived from surface barrier capacitors are the origin of the observed giant dielectric constants. The intrinsic properties of Cu2Ta4O12 are characterized by a (still relatively high) dielectric constant in the order of 100 and by charge transport via hopping conduction of Anderson-localized charge carriers.Comment: 18 pages, 6 figures, submitted to Jouranl of Physical Chemestr

    Dielectric responses of the layered cobalt oxysulfide Sr_2Cu_2CoO_2S_2 with CoO_2 square-planes

    Full text link
    We have studied the dielectric responses of the layered cobalt oxysulfide Sr2_2Cu2_2CoO2_2S2_2 with the CoO2_2 square-planes. With decreasing temperature below the N\'eel temperature, the resistivity increases like a semiconductor, and the thermopower decreases like a metal. The dielectric constant is highly dependent on temperature, and the dielectric relaxation is systematically changed with temperature, which is strongly correlated to the magnetic states. These behaviors suggest that carriers distributed homogeneously in the paramagnetic state at high temperatures are expelled from the antiferromagnetically ordered spin domain below the N\'eel temperature.Comment: 3 pages, 4 eps figures, to be published in J. Appl. Phy

    Propylene Carbonate Reexamined: Mode-Coupling β\beta Scaling without Factorisation ?

    Full text link
    The dynamic susceptibility of propylene carbonate in the moderately viscous regime above TcT_{\rm c} is reinvestigated by incoherent neutron and depolarised light scattering, and compared to dielectric loss and solvation response. Depending on the strength of α\alpha relaxation, a more or less extended β\beta scaling regime is found. Mode-coupling fits yield consistently λ=0.72\lambda=0.72 and Tc=182T_{\rm c}=182 K, although different positions of the susceptibility minimum indicate that not all observables have reached the universal asymptotics

    Electronic and optical properties of LiBC

    Full text link
    LiBC, a semiconducting ternary borocarbide constituted of the lightest elements only, has been synthesized and characterized by x-ray powder diffraction, dielectric spectroscopy, and conductivity measurements. Utilizing an infrared microscope the phonon spectrum has been investigated in single crystals. The in-plane B-C stretching mode has been detected at 150 meV, noticeably higher than in AlB2, a non-superconducting isostructural analog of MgB2. It is this stretching mode, which reveals a strong electron-phonon coupling in MgB2, driving it into a superconducting state below 40 K, and is believed to mediate predicted high-temperature superconductivity in hole-doped LiBC [H. Rosner, A. Kitaigorodsky, and W. E. Pickett, Phys. Rev. Lett. 88, 127001 (2002)].Comment: 4 pages, 4 figure

    Electrode Polarization Effects in Broadband Dielectric Spectroscopy

    Get PDF
    In the present work, we provide broadband dielectric spectra showing strong electrode polarization effects for various materials, belonging to very different material classes. This includes both ionic and electronic conductors as, e.g., salt solutions, ionic liquids, human blood, and colossal-dielectric-constant materials. These data are intended to provide a broad data base enabling a critical test of the validity of phenomenological and microscopic models for electrode polarization. In the present work, the results are analyzed using a simple phenomenological equivalent-circuit description, involving a distributed parallel RC circuit element for the modeling of the weakly conducting regions close to the electrodes. Excellent fits of the experimental data are achieved in this way, demonstrating the universal applicability of this approach. In the investigated ionically conducting materials, we find the universal appearance of a second dispersion region due to electrode polarization, which is only revealed if measuring down to sufficiently low frequencies. This indicates the presence of a second charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form (see "Data Conservancy"

    Test of mode coupling theory for a supercooled liquid of diatomic molecules. II. q-dependent orientational correlators

    Full text link
    Using molecular dynamics computer simulations we study the dynamics of a molecular liquid by means of a general class of time-dependent correlators S_{ll'}^m(q,t) which explicitly involve translational (TDOF) and orientational degrees of freedom (ODOF). The system is composed of rigid, linear molecules with Lennard- Jones interactions. The q-dependence of the static correlators S_{ll'}^m(q) strongly depend on l, l' and m. The time dependent correlators are calculated for l=l'. A thorough test of the predictions of mode coupling theory (MCT) is performed for S_{ll}^m(q,t) and its self part S_{ll}^{(s)m}(q,t), for l=1,..,6. We find a clear signature for the existence of a single temperature T_c, at which the dynamics changes significantly. The first scaling law of MCT, which involves the critical correlator G(t), holds for l>=2, but no critical law is observed. Since this is true for the same exponent parameter lambda as obtained for the TDOF, we obtain a consistent description of both, the TDOF and ODOF, with the exception of l=1. This different behavior for l \ne 1 and l=1 can also be seen from the corresponding susceptibilities (chi'')_{ll}^m(q,omega) which exhibit a minimum at about the same frequency omega_{min} for all q and all l \ne 1, in contrast to (chi'')_{11}^m(q,omega) for which omega'_{min} approx 10 omega_{min} . The asymptotic regime, for which the first scaling law holds, shrinks with increasing l. The second scaling law of MCT (time-temperature superposition principle) is reasonably fulfilled for l \ne 1 but not for l=1. Furthermore we show that the q- and (l,m)-dependence of the self part approximately factorizes, i.e. S_{ll}^{(s)m}(q,t) \cong C_l^{(s)}(t) F_s(q,t) for all m.Comment: 11 pages of RevTex, 16 figure

    Hertz-to-infrared electrodynamics of single-crystalline barium-lead hexaferrite Ba1-xPbxFe12O19

    Get PDF
    Broadband electrodynamic response of single-crystalline lead-substituted barium hexaferrite Ba1-xPbxFe12O19 is studied at temperatures from 5 to 300 K in the range from 1 Hz to 240 THz that includes radio, sub-terahertz, terahertz and infrared frequencies and altogether spans over 14 frequency decades. Discovered phenomena include relaxational radio-frequency dynamics of domains and domain walls, temperature-unstable terahertz excitations connected with electric dipoles induced by off-center displacements in the ab-plane of the lead ions, narrow terahertz excitations associated with electronic transitions between the fine-structure components of the Fe2+ground state, dielectric gigahertz resonances presumably of magneto-electric origin and polar lattice vibrations

    Materials with Colossal Dielectric Constant: Do They Exist?

    Full text link
    Experimental evidence is provided that colossal dielectric constants, epsilon >= 1000, sometimes reported to exist in a broad temperature range, can often be explained by Maxwell-Wagner type contributions of depletion layers at the interface between sample and contacts, or at grain boundaries. We demonstrate this on a variety of different materials. We speculate that the largest intrinsic dielectric constant observed so far in non-ferroelectric materials is of order 100.Comment: 3 figure

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
    • …
    corecore