263 research outputs found
Recommended from our members
Strategic Budget Selection in a Competitive Autobidding World
We study a game played between advertisers in an online ad platform. The platform sells ad impressions by first-price auction and provides autobidding algorithms that optimize bids on each advertiser's behalf, subject to advertiser constraints such as budgets. Crucially, these constraints are strategically chosen by the advertisers. The chosen constraints define an "inner" budget-pacing game for the autobidders. Advertiser payoffs in the constraint-choosing "metagame" are determined by the equilibrium reached by the autobidders. Advertiser preferences can be more general than what is implied by their constraints: we assume only that they have weakly decreasing marginal value for clicks and weakly increasing marginal disutility for spending money. Nevertheless, we show that at any pure Nash equilibrium of the metagame, the resulting allocation obtains at least half of the liquid welfare of any allocation and this bound is tight. We also obtain a 4-approximation for any mixed Nash equilibrium or Bayes-Nash equilibria. These results rely on the power to declare budgets: if advertisers can specify only a (linear) value per click or an ROI target but not a budget constraint, the approximation factor at equilibrium can be as bad as linear in the number of advertisers
The discontinuous Galerkin method for fractional degenerate convection-diffusion equations
We propose and study discontinuous Galerkin methods for strongly degenerate
convection-diffusion equations perturbed by a fractional diffusion (L\'evy)
operator. We prove various stability estimates along with convergence results
toward properly defined (entropy) solutions of linear and nonlinear equations.
Finally, the qualitative behavior of solutions of such equations are
illustrated through numerical experiments
On Nonlinear Stochastic Balance Laws
We are concerned with multidimensional stochastic balance laws. We identify a
class of nonlinear balance laws for which uniform spatial bounds for
vanishing viscosity approximations can be achieved. Moreover, we establish
temporal equicontinuity in of the approximations, uniformly in the
viscosity coefficient. Using these estimates, we supply a multidimensional
existence theory of stochastic entropy solutions. In addition, we establish an
error estimate for the stochastic viscosity method, as well as an explicit
estimate for the continuous dependence of stochastic entropy solutions on the
flux and random source functions. Various further generalizations of the
results are discussed
- …