386 research outputs found
First evidence of maternally inherited mosaicism in TGFBR1 and subtle primary myocardial changes in Loeys-Dietz syndrome: a case report
Background: Loeys-Dietz syndrome (LDS) is a rare multisystemic disorder characterized by vascular and skeletal abnormalities, with considerable intra- and interfamilial variability. Case presentation: We report the case of an 8-year-old male with clinical features of two distinct genetic disorders, namely LDS, manifesting in the first months by progressive aortic root dilatation, arterial tortuosity, bifid uvula, and inguinal hernias and oculocutaneous albinism (OCA) manifesting by white hair and skin that does not tan, nystagmus, reduced iris pigment with iris translucency, and reduced retinal pigment). We identified previously reported, homozygous mutations of TYR, c.1A > G (p.Met1Val) and heterozygous, missense mutation of TGFBR1, c.1460G > A (p.Arg487Gln). Family history revealed that his mother underwent multiple surgical repairs for recurrent hemorrhage originating from the buccal artery. Molecular studies confirmed a maternally inherited low grade TGFBR1 mutation somatic mosaicism (18% in peripheral blood leukocytes, 18% in buccal cells and 10% in hair root cells). Maternal cardiac investigations revealed peculiar cardiovascular features: mild tortuosity at the aortic arch, dilatation of the proximal abdominal aorta, multiple deep left ventricular myocardial crypts, and dysplastic mitral valve. TGFBR2 germline mosaicism has been described in three fathers of children carrying TGFBR2 mutations but, to the best of our knowledge, no case of maternally inherited TGFBR1 mutation mosaicism has been reported so far. Conclusions: This case report suggests that individuals with somatic mosaicism might be at risk for mild and unusual forms of LDS but germline mosaicism can lead to full blown picture of the disease in offspring
European reference network for rare vascular diseases (VASCERN) consensus statement for the screening and management of patients with pathogenic ACTA2 variants
Malaltia aòrtica; Dissecció; Aneurisma aòrtic toràcicEnfermedad aórtica; Disección; Aneurisma de aorta torácicaAortic disease; Dissection; Thoracic aortic aneurysmThe ACTA2 gene encodes for smooth muscle specific α-actin, a critical component of the contractile apparatus of the vascular smooth muscle cell. Pathogenic variants in the ACTA2 gene are the most frequently encountered genetic cause of non-syndromic hereditary thoracic aortic disease (HTAD). Although thoracic aortic aneurysm and/or dissection is the main clinical manifestation, a variety of occlusive vascular disease and extravascular manifestations occur in ACTA2-related vasculopathy. Current data suggest possible mutation-specific manifestations of vascular and extra-aortic traits.
Despite its relatively high prevalence, comprehensive recommendations on the care of patients and families with pathogenic variants in ACTA2 have not yet been established. We aimed to develop a consensus document to provide medical guidance for health care professionals involved in the diagnosis and treatment of patients and relatives with pathogenic variants in ACTA2.
The HTAD Working Group of the European Reference Network for Rare Vascular Diseases (VASCERN) convened to review current literature and discuss expert opinions on clinical management of ACTA2 related vasculopathy. This consensus statement summarizes our recommendations on diagnosis, monitoring, treatment, pregnancy, genetic counselling and testing in patients with ACTA2-related vasculopathy. However, there is a clear need for additional prospective multicenter studies to further define proper guidelines.This work was supported by the Dutch Heart Foundation (2014 T007) and by an Erasmus University Rotterdam Fellowship (I.M.B.H. van de Laar)
Severe aortic and arterial aneurysms associated with a TGFBR2 mutation.
BACKGROUND: A 24-year-old man presented with previously diagnosed Marfan\u27s syndrome. Since the age of 9 years, he had undergone eight cardiovascular procedures to treat rapidly progressive aneurysms, dissection and tortuous vascular disease involving the aortic root and arch, the thoracoabdominal aorta, and brachiocephalic, vertebral, internal thoracic and superior mesenteric arteries. Throughout this extensive series of cardiovascular surgical repairs, he recovered without stroke, paraplegia or renal impairment.
INVESTIGATIONS: CT scans, arteriogram, genetic mutation screening of transforming growth factor beta receptors 1 and 2.
DIAGNOSIS: Diffuse and rapidly progressing vascular disease in a patient who met the diagnostic criteria for Marfan\u27s syndrome, but was later rediagnosed with Loeys-Dietz syndrome. Genetic testing also revealed a de novo mutation in transforming growth factor beta receptor 2.
MANAGEMENT: Regular cardiovascular surveillance for aneurysms and dissections, and aggressive surgical treatment of vascular disease
Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome
Arterial tortuosity syndrome (ATS) is an autosomal recessive
disorder characterized by tortuosity, elongation, stenosis and
aneurysm formation in the major arteries owing to disruption
of elastic fibers in the medial layer of the arterial wall1.
Previously, we used homozygosity mapping to map a candidate
locus in a 4.1-Mb region on chromosome 20q13.1 (ref. 2).
Here, we narrowed the candidate region to 1.2 Mb containing
seven genes. Mutations in one of these genes, SLC2A10,
encoding the facilitative glucose transporter GLUT10, were
identified in six ATS families. GLUT10 deficiency is associated
with upregulation of the TGFb pathway in the arterial wall, a
finding also observed in Loeys-Dietz syndrome, in which aortic
aneurysms associate with arterial tortuosity3. The identification
of a glucose transporter gene responsible for altered arterial
morphogenesis is notable in light of the previously suggested
link between GLUT10 and type 2 diabetes4,5. Our data
could provide new insight on the mechanisms causing
microangiopathic changes associated with diabetes and
suggest that therapeutic compounds intervening with
TGFb signaling represent a new treatment strategy
Biological activity differences between TGF-β1 and TGF-β3 correlate with differences in the rigidity and arrangement of their component monomers
[Image: see text] TGF-β1, -β2, and -β3 are small, secreted signaling proteins. They share 71–80% sequence identity and signal through the same receptors, yet the isoform-specific null mice have distinctive phenotypes and are inviable. The replacement of the coding sequence of TGF-β1 with TGF-β3 and TGF-β3 with TGF-β1 led to only partial rescue of the mutant phenotypes, suggesting that intrinsic differences between them contribute to the requirement of each in vivo. Here, we investigated whether the previously reported differences in the flexibility of the interfacial helix and arrangement of monomers was responsible for the differences in activity by generating two chimeric proteins in which residues 54–75 in the homodimer interface were swapped. Structural analysis of these using NMR and functional analysis using a dermal fibroblast migration assay showed that swapping the interfacial region swapped both the conformational preferences and activity. Conformational and activity differences were also observed between TGF-β3 and a variant with four helix-stabilizing residues from TGF-β1, suggesting that the observed changes were due to increased helical stability and the altered conformation, as proposed. Surface plasmon resonance analysis showed that TGF-β1, TGF-β3, and variants bound the type II signaling receptor, TβRII, nearly identically, but had small differences in the dissociation rate constant for recruitment of the type I signaling receptor, TβRI. However, the latter did not correlate with conformational preference or activity. Hence, the difference in activity arises from differences in their conformations, not their manner of receptor binding, suggesting that a matrix protein that differentially binds them might determine their distinct activities
Absence of cardiovascular manifestations in a haploinsufficient Tgfbr1 mouse model
Loeys-Dietz syndrome (LDS) is an autosomal dominant arterial aneurysm disease belonging to the spectrum of transforming growth factor β (TGFβ)-associated vasculopathies. In its most typical form it is characterized by the presence of hypertelorism, bifid uvula/cleft palate and aortic aneurysm and/or arterial tortuosity. LDS is caused by heterozygous loss of function mutations in the genes encoding TGFβ receptor 1 and 2 (TGFBR1 and -2), which lead to a paradoxical increase in TGFβ signaling. To address this apparent paradox and to gain more insight into the pathophysiology of aneurysmal disease, we characterized a new Tgfbr1 mouse model carrying a p.Y378*nonsense mutation. Study of the natural history in this model showed that homozygous mutant mice die during embryonic development due to defective vascularization. Heterozygous mutant mice aged 6 and 12 months were morphologically and (immuno)histochemically indistinguishable from wild-type mice. We show that the mutant allele is degraded by nonsense mediated mRNA decay, expected to result in haploinsufficiency of the mutant allele. Since this haploinsufficiency model does not result in cardiovascular malformations, it does not allow further study of the process of aneurysm formation. In addition to providing a comprehensive method for cardiovascular phenotyping in mice, the results of this study confirm that haploinsuffciency is not the underlying genetic mechanism in human LDS
Transforming growth factor β receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction
<p>Abstract</p> <p>Background</p> <p>Prediction of left ventricular (LV) remodeling after acute myocardial infarction (MI) is clinically important and would benefit from the discovery of new biomarkers.</p> <p>Methods</p> <p>Blood samples were obtained upon admission in patients with acute ST-elevation MI who underwent primary percutaneous coronary intervention. Messenger RNA was extracted from whole blood cells. LV function was evaluated by echocardiography at 4-months.</p> <p>Results</p> <p>In a test cohort of 32 MI patients, integrated analysis of microarrays with a network of protein-protein interactions identified subgroups of genes which predicted LV dysfunction (ejection fraction ≤ 40%) with areas under the receiver operating characteristic curve (AUC) above 0.80. Candidate genes included transforming growth factor beta receptor 1 (TGFBR1). In a validation cohort of 115 MI patients, TGBFR1 was up-regulated in patients with LV dysfunction (P < 0.001) and was associated with LV function at 4-months (P = 0.003). TGFBR1 predicted LV function with an AUC of 0.72, while peak levels of troponin T (TnT) provided an AUC of 0.64. Adding TGFBR1 to the prediction of TnT resulted in a net reclassification index of 8.2%. When added to a mixed clinical model including age, gender and time to reperfusion, TGFBR1 reclassified 17.7% of misclassified patients. TGFB1, the ligand of TGFBR1, was also up-regulated in patients with LV dysfunction (P = 0.004), was associated with LV function (P = 0.006), and provided an AUC of 0.66. In the rat MI model induced by permanent coronary ligation, the TGFB1-TGFBR1 axis was activated in the heart and correlated with the extent of remodeling at 2 months.</p> <p>Conclusions</p> <p>We identified TGFBR1 as a new candidate prognostic biomarker after acute MI.</p
Augmentation index assessed by applanation tonometry is elevated in Marfan Syndrome
<p>Abstract</p> <p>Background</p> <p>To examine whether augmentation index (AIx) is increased in Marfan syndrome (MFS) and associated with increased aortic root size, and whether a peripheral-to-central generalised transfer function (GTF) can be applied usefully in MFS.</p> <p>Methods</p> <p>10 MFS patients and 10 healthy controls (matched for sex, age and height) were studied before and after 400 μg sub-lingual GTN. Arterial waveforms were recorded using applanation tonometry. AIx and pulse pressure (PP) were determined for the radial and carotid arteries. Pulse wave velocity (PWV) was measured between carotid and femoral arteries. GTFs were generated to examine the relationship between radial and carotid waveforms.</p> <p>Results</p> <p>AIx was greater in MFS compared to controls at radial (mean -31.4 (SD 14.3)% v -50.2(15.6)%, p = 0.003) and carotid (-7.6(11.2)% v -23.7(12.7)%, p = 0.004) sites. Baseline PP at all measurement sites, and PWV, did not differ between subject groups. Multivariate analysis demonstrated that PWV and carotid AIx were positively correlated with aortic root size (p < 0.001 and p = 0.012 respectively), independent of the presence of MFS. PP was not associated with aortic root size. GTN caused similar decreases in AIx in both controls and patients. Significant differences were found in GTFs between MFS and control subjects, which changed following GTN administration. However, when an independent GTF was used to derive carotid waves from radial waves, no differences were found in the degree of error between MFS and controls.</p> <p>Conclusion</p> <p>AIx is sensitive to the vascular abnormalities present in MFS, and may have a role as an adjunct to measurement of central PP and PWV. Differences between MFS and controls in the nature of the peripheral-to-central GTF are present, although have little effect on the pulse contour.</p
The effects of acute and elective cardiac surgery on the anxiety traits of patients with Marfan syndrome
BACKGROUND: Marfan syndrome is a genetic disease, presenting with dysfunction of connective tissues leading to lesions in the cardiovascular and skeletal muscle system. Within these symptoms, the most typical is weakness of the connective tissue in the aorta, manifesting as aortic dilatation (aneurysm). This could, in turn, become annuloaortic ectasia, or life-threatening dissection. As a result, life-saving and preventative cardiac surgical interventions are frequent among Marfan syndrome patients. Aortic aneurysm could turn into annuloaortic ectasia or life-threatening dissection, thus life-saving and preventive cardiac surgical interventions are frequent among patients with Marfan syndrome. We hypothesized that patients with Marfan syndrome have different level of anxiety, depression and satisfaction with life compared to that of the non-clinical patient population. METHODS: Patients diagnosed with Marfan syndrome were divided into 3 groups: those scheduled for prophylactic surgery, those needing acute surgery, and those without need for surgery (n = 9, 19, 17, respectively). To examine the psychological features of the patients, Spielberger's anxiety (STAI) test, Beck's Depression questionnaire (BDI), the Berne Questionnaire of Subjective Well-being, and the Satisfaction with Life scale were applied. RESULTS: A significant difference was found in trait anxiety between healthy individuals and patients with Marfan syndrome after acute life-saving surgery (p 0.1). Finally, a significant, medium size effect was found between patient groups on the Joy in Living scale (F (2.39) = 3.51, p = 0.040, eta2 = 0.15). CONCLUSIONS: Involving psychiatric and mental-health care, in addition to existing surgical treatment interventions, is essential for more successful recovery of patients with Marfan syndrome
- …