14 research outputs found
Randomized Trial of Metformin, Ivermectin, and Fluvoxamine for Covid-19
BACKGROUND Early treatment to prevent severe coronavirus disease 2019 (Covid-19) is an important component of the comprehensive response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. METHODS In this phase 3, double-blind, randomized, placebo-controlled trial, we used a 2-by-3 factorial design to test the effectiveness of three repurposed drugs - metformin, ivermectin, and fluvoxamine - in preventing serious SARS-CoV-2 infection in nonhospitalized adults who had been enrolled within 3 days after a confirmed diagnosis of infection and less than 7 days after the onset of symptoms. The patients were between the ages of 30 and 85 years, and all had either overweight or obesity. The primary composite end point was hypoxemia (≤93% oxygen saturation on home oximetry), emergency department visit, hospitalization, or death. All analyses used controls who had undergone concurrent randomization and were adjusted for SARSCoV-2 vaccination and receipt of other trial medications. RESULTS A total of 1431 patients underwent randomization; of these patients, 1323 were included in the primary analysis. The median age of the patients was 46 years; 56% were female (6% of whom were pregnant), and 52% had been vaccinated. The adjusted odds ratio for a primary event was 0.84 (95% confidence interval [CI], 0.66 to 1.09; P=0.19) with metformin, 1.05 (95% CI, 0.76 to 1.45; P=0.78) with ivermectin, and 0.94 (95% CI, 0.66 to 1.36; P=0.75) with fluvoxamine. In prespecified secondary analyses, the adjusted odds ratio for emergency department visit, hospitalization, or death was 0.58 (95% CI, 0.35 to 0.94) with metformin, 1.39 (95% CI, 0.72 to 2.69) with ivermectin, and 1.17 (95% CI, 0.57 to 2.40) with fluvoxamine. The adjusted odds ratio for hospitalization or death was 0.47 (95% CI, 0.20 to 1.11) with metformin, 0.73 (95% CI, 0.19 to 2.77) with ivermectin, and 1.11 (95% CI, 0.33 to 3.76) with fluvoxamine. CONCLUSIONS None of the three medications that were evaluated prevented the occurrence of hypoxemia, an emergency department visit, hospitalization, or death associated with Covid-19
Outpatient treatment of COVID-19 and incidence of post-COVID-19 condition over 10 months (COVID-OUT): a multicentre, randomised, quadruple-blind, parallel-group, phase 3 trial
Background: Post-COVID-19 condition (also known as long COVID) is an emerging chronic illness potentially affecting millions of people. We aimed to evaluate whether outpatient COVID-19 treatment with metformin, ivermectin, or fluvoxamine soon after SARS-CoV-2 infection could reduce the risk of long COVID. Methods: We conducted a decentralised, randomised, quadruple-blind, parallel-group, phase 3 trial (COVID-OUT) at six sites in the USA. We included adults aged 30–85 years with overweight or obesity who had COVID-19 symptoms for fewer than 7 days and a documented SARS-CoV-2 positive PCR or antigen test within 3 days before enrolment. Participants were randomly assigned via 2 × 3 parallel factorial randomisation (1:1:1:1:1:1) to receive metformin plus ivermectin, metformin plus fluvoxamine, metformin plus placebo, ivermectin plus placebo, fluvoxamine plus placebo, or placebo plus placebo. Participants, investigators, care providers, and outcomes assessors were masked to study group assignment. The primary outcome was severe COVID-19 by day 14, and those data have been published previously. Because the trial was delivered remotely nationwide, the a priori primary sample was a modified intention-to-treat sample, meaning that participants who did not receive any dose of study treatment were excluded. Long COVID diagnosis by a medical provider was a prespecified, long-term secondary outcome. This trial is complete and is registered with ClinicalTrials.gov, NCT04510194. Findings: Between Dec 30, 2020, and Jan 28, 2022, 6602 people were assessed for eligibility and 1431 were enrolled and randomly assigned. Of 1323 participants who received a dose of study treatment and were included in the modified intention-to-treat population, 1126 consented for long-term follow-up and completed at least one survey after the assessment for long COVID at day 180 (564 received metformin and 562 received matched placebo; a subset of participants in the metformin vs placebo trial were also randomly assigned to receive ivermectin or fluvoxamine). 1074 (95%) of 1126 participants completed at least 9 months of follow-up. 632 (56·1%) of 1126 participants were female and 494 (43·9%) were male; 44 (7·0%) of 632 women were pregnant. The median age was 45 years (IQR 37–54) and median BMI was 29·8 kg/m2 (IQR 27·0–34·2). Overall, 93 (8·3%) of 1126 participants reported receipt of a long COVID diagnosis by day 300. The cumulative incidence of long COVID by day 300 was 6·3% (95% CI 4·2–8·2) in participants who received metformin and 10·4% (7·8–12·9) in those who received identical metformin placebo (hazard ratio [HR] 0·59, 95% CI 0·39–0·89; p=0·012). The metformin beneficial effect was consistent across prespecified subgroups. When metformin was started within 3 days of symptom onset, the HR was 0·37 (95% CI 0·15–0·95). There was no effect on cumulative incidence of long COVID with ivermectin (HR 0·99, 95% CI 0·59–1·64) or fluvoxamine (1·36, 0·78–2·34) compared with placebo. Interpretation: Outpatient treatment with metformin reduced long COVID incidence by about 41%, with an absolute reduction of 4·1%, compared with placebo. Metformin has clinical benefits when used as outpatient treatment for COVID-19 and is globally available, low-cost, and safe. Funding: Parsemus Foundation; Rainwater Charitable Foundation; Fast Grants; UnitedHealth Group Foundation; National Institute of Diabetes, Digestive and Kidney Diseases; National Institutes of Health; and National Center for Advancing Translational Sciences
The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q
One of the vital roles of ascorbic acid (vitamin C) is to act as an antioxidant to protect cellular components from free radical damage. Ascorbic acid has been shown to scavenge free radicals directly in the aqueous phases of cells and the circulatory system. Ascorbic acid has also been proven to protect membrane and other hydrophobic compartments from such damage by regenerating the antioxidant form of vitamin E. In addition, reduced coenzyme Q, also a resident of hydrophobic compartments, interacts with vitamin E to regenerate its antioxidant form. The mechanism of vitamin C antioxidant function, the myriad of pathologies resulting from its clinical deficiency, and the many health benefits it provides, are reviewed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44796/1/10863_2004_Article_BF00762775.pd
Back Cover Image, Volume 93, Number 7, July 2021
Back Cover Caption: The cover image is based on the Research Article Outpatient metformin use is associated with reduced severity of COVID‐19 disease in adults with overweight or obesity by Carolyn T. Bramante et al., https://doi.org/10.1002/jmv.26873.
Design Credit: Andy Grams
Outpatient metformin use is associated with reduced severity of COVID‐19 disease in adults with overweight or obesity
Observational studies suggest outpatient metformin use is associated with reduced mortality from coronavirus disease-2019 (COVID-19). Metformin is known to decrease interleukin-6 and tumor-necrosis factor-α, which appear to contribute to morbidity in COVID-19. We sought to understand whether outpatient metformin use was associated with reduced odds of severe COVID-19 disease in a large US healthcare data set. Retrospective cohort analysis of electronic health record (EHR) data that was pooled across multiple EHR systems from 12 hospitals and 60 primary care clinics in the Midwest between March 4, 2020 and December 4, 2020. Inclusion criteria: data for body mass index (BMI) > 25 kg/m
and a positive SARS-CoV-2 polymerase chain reaction test; age ≥ 30 and ≤85 years. Exclusion criteria: patient opt-out of research. Metformin is the exposure of interest, and death, admission, and intensive care unit admission are the outcomes of interest. Metformin was associated with a decrease in mortality from COVID-19, OR 0.32 (0.15, 0.66; p = .002), and in the propensity-matched cohorts, OR 0.38 (0.16, 0.91; p = .030). Metformin was associated with a nonsignificant decrease in hospital admission for COVID-19 in the overall cohort, OR 0.78 (0.58-1.04, p = .087). Among the subgroup with a hemoglobin HbA1c available (n = 1193), the adjusted odds of hospitalization (including adjustment for HbA1c) for metformin users was OR 0.75 (0.53-1.06, p = .105). Outpatient metformin use was associated with lower mortality and a trend towards decreased admission for COVID-19. Given metformin's low cost, established safety, and the mounting evidence of reduced severity of COVID-19 disease, metformin should be prospectively assessed for outpatient treatment of COVID-19
Strategies used for the COVID-OUT decentralized trial of outpatient treatment of SARS-CoV-2
The COVID-19 pandemic accelerated the development of decentralized clinical trials (DCT). DCT’s are an important and pragmatic method for assessing health outcomes yet comprise only a minority of clinical trials, and few published methodologies exist. In this report, we detail the operational components of COVID-OUT, a decentralized, multicenter, quadruple-blinded, randomized trial that rapidly delivered study drugs nation-wide. The trial examined three medications (metformin, ivermectin, and fluvoxamine) as outpatient treatment of SARS-CoV-2 for their effectiveness in preventing severe or long COVID-19. Decentralized strategies included HIPAA-compliant electronic screening and consenting, prepacking investigational product to accelerate delivery after randomization, and remotely confirming participant-reported outcomes. Of the 1417 individuals with the intention-to-treat sample, the remote nature of the study caused an additional 94 participants to not take any doses of study drug. Therefore, 1323 participants were in the modified intention-to-treat sample, which was the a priori primary study sample. Only 1.4% of participants were lost to follow-up. Decentralized strategies facilitated the successful completion of the COVID-OUT trial without any in-person contact by expediting intervention delivery, expanding trial access geographically, limiting contagion exposure, and making it easy for participants to complete follow-up visits. Remotely completed consent and follow-up facilitated enrollment