3,408 research outputs found
Design of a Hypersonic Waterjet Apparatus Driven by High Explosives
The design and construction of a hypersonic waterjet apparatus is described. Jet velocities from 0.5 to 5 km/s have been achieved using a high explosive charge. Images are obtained in situ on various target substrates using a high-speed framing camera. Experimental results are shown for the impact of high velocity waterjets on propellants and high explosive samples. By observing the impact of the waterjet at a wide range of velocities a safety threshold can be determined where no reaction takes place
Circles in the Sky: Finding Topology with the Microwave Background Radiation
If the universe is finite and smaller than the distance to the surface of
last scatter, then the signature of the topology of the universe is writ large
on the microwave background sky. We show that the microwave background will be
identified at the intersections of the surface of last scattering as seen by
different ``copies'' of the observer. Since the surface of last scattering is a
two-sphere, these intersections will be circles, regardless of the background
geometry or topology. We therefore propose a statistic that is sensitive to all
small, locally homogeneous topologies. Here, small means that the distance to
the surface of last scatter is smaller than the ``topology scale'' of the
universe.Comment: 14 pages, 10 figures, IOP format. This paper is a direct descendant
of gr-qc/9602039. To appear in a special proceedings issue of Class. Quant.
Grav. covering the Cleveland Topology & Cosmology Worksho
Segue Between Favorable and Unfavorable Solvation
Solvation of small and large clusters are studied by simulation, considering
a range of solvent-solute attractive energy strengths. Over a wide range of
conditions, both for solvation in the Lennard-Jones liquid and in the SPC model
of water, it is shown that the mean solvent density varies linearly with
changes in solvent-solute adhesion or attractive energy strength. This behavior
is understood from the perspective of Weeks' theory of solvation [Ann. Rev.
Phys. Chem. 2002, 53, 533] and supports theories based upon that perspective.Comment: 8 pages, 7 figure
Recommended from our members
Thermodynamic Analysis Of Pure And Impurity Doped Pentaerythritol Tetranitrate Crystals Grown At Room Temperature
Pentaerythritol tetranitrate (PETN) powders are used to initiate other explosives. During long-term storage, changes in powder properties can cause changes in the initiation performance. Changes in the morphology and surface area of aging powders are observed due to sublimation and growth of PETN crystals through coarsening mechanisms, (e.g. Ostwald ripening, sintering, etc.). In order to alleviate the sublimation of PETN crystals under service conditions, stabilization methods such as thermal cycling and doping with certain impurities during or after the crystallization of PETN have been proposed. In this report we present our work on the effect of impurities on the morphology and activation energy of the PETN crystals. The pure and impurity doped crystals of PETN were grown from supersaturated acetone solution by solvent evaporation technique at room temperature. The difference in the morphology of the impurity-doped PETN crystal compared to pure crystal was examined by optical microscopy. The changes in the activation energies and the evaporation rates are determined by thermogravimetric (TGA) analyses. Our activation energies of evaporation agree with earlier reported enthalpies of vaporization. The morphology and activation energy of PETN crystals doped with Ca, Na, and Fe cations are similar to that for pure PETN crystal, whereas the Zn-ion-doped PETN crystals have different morphology and decreased activation energy
Study of the island morphology at the early stages of Fe/Mo(110) MBE growth
We present theoretical study of morphology of Fe islands grown at Mo(110)
surface in sub-monolayer MBE mode. We utilize atomistic SOS model with bond
counting, and interactions of Fe adatom up to third nearest neighbors. We
performed KMC simulations for different values of adatom interactions and
varying temperatures. We have found that, while for the low temperature islands
are fat fractals, for the temperature 500K islands have faceted rhombic-like
shape. For the higher temperature, islands acquire a rounded shape. In order to
evaluated qualitatively morphological changes, we measured averaged aspect
ration of islands. We calculated dependence of the average aspect ratio on the
temperature, and on the strength of interactions of an adatom with neighbors.Comment: 6 pages, 6 figures. Proceedings of 11-th Symposium on Surface
Physics, Prague 200
Correlated electron states and transport in triangular arrays
We study correlated electron states in frustrated geometry of a triangular
lattice. The interplay of long range interactions and finite residual entropy
of a classical system gives rise to unusual effects in equilibrium ordering as
well as in transport. A novel correlated fluid phase is identified in a wide
range of densities and temperatures above freezing into commensurate solid
phases. The charge dynamics in the correlated phase is described in terms of a
height field, its fluctuations, and topological defects. We demonstrate that
the height field fluctuations give rise to a ``free'' charge flow and finite dc
conductivity. We show that freezing into the solid phase, controlled by the
long range interactions, manifests itself in singularities of transport
properties.Comment: 19 pages, 10 figure
Nature of phase transition(s) in striped phase of triangular-lattice Ising antiferromagnet
Different scenarios of the fluctuation-induced disordering of the striped
phase which is formed at low temperatures in the triangular-lattice Ising model
with the antiferromagnetic interaction of nearest and next-to-nearest neighbors
are analyzed and compared. The dominant mechanism of the disordering is related
to the formation of a network of domain walls, which is characterized by an
extensive number of zero modes and has to appear via the first-order phase
transition. In principle, this first-order transition can be preceded by a
continuous one, related to the spontaneous formation of double domain walls and
a partial restoration of the broken symmetry, but the realization of such a
scenario requires the fulfillment of rather special relations between the
coupling constants.Comment: 10 pages, 7 figures, ReVTeX
The Physics of the Colloidal Glass Transition
As one increases the concentration of a colloidal suspension, the system
exhibits a dramatic increase in viscosity. Structurally, the system resembles a
liquid, yet motions within the suspension are slow enough that it can be
considered essentially frozen. This kinetic arrest is the colloidal glass
transition. For several decades, colloids have served as a valuable model
system for understanding the glass transition in molecular systems. The spatial
and temporal scales involved allow these systems to be studied by a wide
variety of experimental techniques. The focus of this review is the current
state of understanding of the colloidal glass transition. A brief introduction
is given to important experimental techniques used to study the glass
transition in colloids. We describe features of colloidal systems near and in
glassy states, including tremendous increases in viscosity and relaxation
times, dynamical heterogeneity, and ageing, among others. We also compare and
contrast the glass transition in colloids to that in molecular liquids. Other
glassy systems are briefly discussed, as well as recently developed synthesis
techniques that will keep these systems rich with interesting physics for years
to come.Comment: 56 pages, 18 figures, Revie
Thermal noise properties of two aging materials
In this lecture we review several aspects of the thermal noise properties in
two aging materials: a polymer and a colloidal glass.
The measurements have been performed after a quench for the polymer and
during the transition from a fluid-like to a solid-like state for the gel. Two
kind of noise has been measured: the electrical noise and the mechanical noise.
For both materials we have observed that the electric noise is characterized
by a strong intermittency, which induces a large violation of the Fluctuation
Dissipation Theorem (FDT) during the aging time, and may persist for several
hours at low frequency. The statistics of these intermittent signals and their
dependance on the quench speed for the polymer or on sample concentration for
the gel are studied. The results are in a qualitative agreement with recent
models of aging, that predict an intermittent dynamics. For the mechanical
noise the results are unclear. In the polymer the mechanical thermal noise is
still intermittent whereas for the gel the violation of FDT, if it exists, is
extremely small.Comment: to be published in the Proceedings of the XIX Sitges Conference on
''Jammming, Yielding and Irreversible Deformation in Condensed Matter'',
M.-C.Miguel and M. Rubi eds.,Springer Verlag, Berli
- …