110 research outputs found

    Theory of doorway states for one-nucleon transfer reactions. II. Model-independent study of nuclear correlation effects

    Get PDF
    The correlation effects in nuclei owing to which the nuclear wave functions are different from the Slater determinants are studied on the basis of the original theory. The calculated numbers of nucleons out of the nuclear Fermi-surface are in reasonable agreement with the finding from the high-momentum components of the nucleon momentum distributions in nuclei. The problems concerning the nuclear binding energy are also discussed.Comment: 11 pages LaTeX, epsfig.sty + 1 PostScript figure. submitted to Journal of Nuclear Physic

    Contribution of boundness and motion of nucleons to the EMC effect

    Full text link
    The kinematical corrections to the structure function of nucleon in nucleus due to the boundness and motion of nucleons arise from the excitation of the doorway states for one-nucleon transfer reactions in the deep inelastic scattering on nuclei.Comment: 19 pages, 1 figure, 6 table

    Prescriptions for the scaling variable of the nucleon structure function in nuclei

    Full text link
    We tested several choices of the in-medium value of the Bjorken scaling variable assuming the nucleon structure function in nucleus to be the same as that of free nucleon. The results unambiguously show that it is different.Comment: 11 pages, 3 figures, 1 tabl

    Schiff moment of the Mercury nucleus and the proton dipole moment

    Full text link
    We calculated the contribution of internal nucleon electric dipole moments to the Schiff moment of 199^{199}Hg. The contribution of the proton electric dipole moment was obtained via core polarization effects that were treated in the framework of random phase approximation with effective residual forces. We derived a new upper bound ∣dp∣<5.4×10−24e⋅|d_p|< 5.4\times 10^{-24} e\cdotcm of the proton electric dipole moment.Comment: 4 pages, 2 figures, RevTex

    Nuclear Magnetic Quadrupole Moments in Single Particle Approximation

    Full text link
    A static magnetic quadrupole moment of a nucleus, induced by T- and P-odd nucleon-nucleon interaction, is investigated in the single-particle approximation. Models are considered allowing for analytical solution. The problem is also treated numerically in a Woods-Saxon potential with spin-orbit interaction. The stability of results is discussed.Comment: LATEX, 9 pages, 1 postscript figure available upon request from "[email protected]". BINP 94-4
    • …
    corecore