2,606 research outputs found

    Preliminary design of graphite composite wing panels for commercial transport aircraft

    Get PDF
    Subjectively assessed practical and producible graphite/epoxy designs were subjected to a multilevel screening procedure which considered structural functions, efficiency, manufacturing and producibility, costs, maintainability, and inspectability. As each progressive screening level was reviewed, more definitive information on the structural efficiency (weight), manufacturing, and inspection procedures was established to support the design selection. The configuration features that enhance producibility of the final selected design can be used as a generic base for application to other wing panel designs. The selected panel design showed a weight saving of 25 percent over a conventional aluminum design meeting the same design requirements. The estimated cost reduction in manufacturing was 20 percent, based on 200 aircraft and projected 1985 automated composites manufacturing capability. The panel design background information developed will be used in the follow-on tasks to ensure that future panel development represents practical and producible design approaches to graphite/epoxy wing surface panels

    Corn Silage Diets for Finishing Cattle When Supplemented With Soybean Meal or Urea and DES Fed at 10 mg., 20 mg. Daily or Implanted

    Get PDF
    Corn silage properly supplemented with protein, minerals and vitamin A forms a simple and efficient diet for growing and finishing cattle. Rate of gain will be less than for high-concentrate diets, especially during late stages of finishing. However, gain per acre of corn will be greater when fed as silage than as grain

    Quantifying the potential for reservoirs to secure future surface water yields in the world's largest river basins

    Get PDF
    Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet, reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways (SSP) to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (~4.3-4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different scenarios when quantifying available surface water yields and the potential for reservoir expansion

    Final-State-Interaction Simulation of T-Violation in the Top-Quark Semileptonic Decay

    Full text link
    The standard electroweak final-state interaction induces a false T-odd correlation in the top-quark semileptonic decay. The correlation parameter is calculated in the standard model and found to be considerably larger than those that could be produced by genuine T-violation effects in a large class of theoretical models.Comment: 14 pages, 1 diagram (not included

    Development and mapping of SNP assays in allotetraploid cotton

    Get PDF
    A narrow germplasm base and a complex allotetraploid genome have made the discovery of single nucleotide polymorphism (SNP) markers difficult in cotton (Gossypiumhirsutum). To generate sequence for SNP discovery, we conducted a genome reduction experiment (EcoRI, BafI double digest, followed by adapter ligation, biotin–streptavidin purification, and agarose gel separation) on two accessions of G. hirsutum and two accessions of G. barbadense. From the genome reduction experiment, a total of 2.04 million genomic sequence reads were assembled into contigs with an N50 of 508 bp and analyzed for SNPs. A previously generated assembly of expressed sequence tags (ESTs) provided an additional source for SNP discovery. Using highly conservative parameters (minimum coverage of 8× at each SNP and 20% minor allele frequency), a total of 11,834 and 1,679 non-genic SNPs were identified between accessions of G. hirsutum and G. barbadense in genome reduction assemblies, respectively. An additional 4,327 genic SNPs were also identified between accessions of G. hirsutum in the EST assembly. KBioscience KASPar assays were designed for a portion of the intra-specific G. hirsutum SNPs. From 704 non-genic and 348 genic markers developed, a total of 367 (267 non-genic, 100 genic) mapped in a segregating F2 population (Acala Maxxa × TX2094) using the Fluidigm EP1 system. A G. hirsutum genetic linkage map of 1,688 cM was constructed based entirely on these new SNP markers. Of the genic-based SNPs, we were able to identify within which genome (‘A’ or ‘D’) each SNP resided using diploid species sequence data. Genetic maps generated by these newly identified markers are being used to locate quantitative, economically important regions within the cotton genome

    MSEC2006-21098 RESULTS OF CYLINDER BORE INSPECTION PROBE MEASUREMENTS

    Get PDF
    ABSTRACT A non contact optical technique for mapping the surface finish of cylinder bores has been developed, and a probe has been built for performing this mapping by scanning the surface of a cylinder with a laser beam and recording the intensity of scattered light detected as a function of position on the cylinder surface. The probe is not a surface roughness gauge. It is used primarily to distinguish the scattering signatures from different patterns of machining marks. For identical patterns of machining marks scattered light intensity is expected to be proportional to surface roughness. Measurement of a cylinder takes about 10 seconds using this probe. If an array of probes were used to inspect the cylinders of an engine block simultaneously, this technique could be used for 100% inspection of the entire surface of every cylinder of every block at the speed of an engine production line. In this paper we present data from a proof of concept experiment, describe the method of analyzing the data, and outline plans for future implementation of an inspection station on an engine block production line

    Topological quenching of the tunnel splitting for a particle in a double-well potential on a planar loop

    Get PDF
    The motion of a particle along a one-dimensional closed curve in a plane is considered. The only restriction on the shape of the loop is that it must be invariant under a twofold rotation about an axis perpendicular to the plane of motion. Along the curve a symmetric double-well potential is present leading to a twofold degeneracy of the classical ground state. In quantum mechanics, this degeneracy is lifted: the energies of the ground state and the first excited state are separated from each other by a slight difference ¿E, the tunnel splitting. Although a magnetic field perpendicular to the plane of the loop does not influence the classical motion of the charged particle, the quantum-mechanical separation of levels turns out to be a function of its strength B. The dependence of ¿E on the field B is oscillatory: for specific discrete values Bn the splitting drops to zero, indicating a twofold degeneracy of the ground state. This result is obtained within the path-integral formulation of quantum mechanics; in particular, the semiclassical instanton method is used. The origin of the quenched splitting is intuitively obvious: it is due to the fact that the configuration space of the system is not simply connected, thus allowing for destructive interference of quantum-mechanical amplitudes. From an abstract point of view this phenomenon can be traced back to the existence of a topological term in the Lagrangian and a nonsimply connected configuration space. In principle, it should be possible to observe the splitting in appropriately fabricated mesoscopic rings consisting of normally conducting metal

    Attachment, Social Support, and Perceived Mental Health of Adult Dog Walkers: What Does Age Have to Do With It?

    Get PDF
    In part of a larger pilot study of dog walking as a physical activity intervention we assessed levels of attachment, social supports, and perceived mental health of 75 dog owners, identified through a tertiary- care veterinary hospital. Owners completed the Medical Outcomes Study (MOS) Social Support Survey, mental health component of the Short-Form-12 (SF-12) Health Survey, and the Lexington Attachment to Pets Scale (LAPS). Of particular interest was that younger owners had stronger attachments to their dogs (r = -.488;p \u3c.001) and less social support (r = .269;p =.021). Our study suggests the importance of companion animals for social support, particularly for those without close friends/relatives. For younger owners, our study reveals vulnerabilities in support networks that may warrant referrals to human helping professionals. We suggest the use of Carstensen\u27s Socioemotional Selectivity Theory as an interpretive framework to underscore the importance of including companion animals as part of the human social convoy, especially in terms of providing affectionate and interactional social support

    Persistent Currents in Multichannel Interacting Systems

    Full text link
    Persistent currents of disordered multichannel mesoscopic rings of spinless interacting fermions threaded by a magnetic flux are calculated using exact diagonalizations and self-consistent Hartree-Fock methods. The validity of the Hartree-Fock approximation is controled by a direct comparison with the exact results on small 4×44\times4 clusters. For sufficiently large disorder (diffusive regime), the effect of repulsive interactions on the current distribution is to slightly decrease its width (mean square current) but to {\it increase} its mean value (mean current). This effect is stronger in the case of a long range repulsion. Our results suggest that the coupling between the chains is essential to understand the large currents observed experimentally.Comment: Revised version, uuencoded compressed file including fig

    Quantization of Superflow Circulation and Magnetic Flux with a Tunable Offset

    Full text link
    Quantization of superflow-circulation and of magnetic-flux are considered for systems, such as superfluid 3^3He-A and unconventional superconductors, having nonscalar order parameters. The circulation is shown to be the anholonomy in the parallel transport of the order parameter. For multiply-connected samples free of distributed vorticity, circulation and flux are predicted to be quantized, but generically to nonintegral values that are tunably offset from integers. This amounts to a version of Aharonov-Bohm physics. Experimental settings for testing these issues are discussed.Comment: 5 two-column pages, ReVTeX, figure available upon request (to [email protected]
    corecore