1,340 research outputs found

    Dispersionless Toda hierarchy and two-dimensional string theory

    Full text link
    The dispersionless Toda hierarchy turns out to lie in the heart of a recently proposed Landau-Ginzburg formulation of two-dimensional string theory at self-dual compactification radius. The dynamics of massless tachyons with discrete momenta is shown to be encoded into the structure of a special solution of this integrable hierarchy. This solution is obtained by solving a Riemann-Hilbert problem. Equivalence to the tachyon dynamics is proven by deriving recursion relations of tachyon correlation functions in the machinery of the dispersionless Toda hierarchy. Fundamental ingredients of the Landau-Ginzburg formulation, such as Landau-Ginzburg potentials and tachyon Landau-Ginzburg fields, are translated into the language of the Lax formalism. Furthermore, a wedge algebra is pointed out to exist behind the Riemann-Hilbert problem, and speculations on its possible role as generators of ``extra'' states and fields are presented.Comment: LaTeX 21 pages, KUCP-0067 (typos are corrected and a brief note is added

    Integrable hierarchy underlying topological Landau-Ginzburg models of D-type

    Full text link
    A universal integrable hierarchy underlying topological Landau-Ginzburg models of D-tye is presented. Like the dispersionless Toda hierarchy, the new hierarchy has two distinct (``positive" and ``negative") set of flows. Special solutions corresponding to topological Landau-Ginzburg models of D-type are characterized by a Riemann-Hilbert problem, which can be converted into a generalized hodograph transformation. This construction gives an embedding of the finite dimensional small phase space of these models into the full space of flows of this hierarchy. One of flat coordinates in the small phase space turns out to be identical to the first ``negative" time variable of the hierarchy, whereas the others belong to the ``positive" flows.Comment: 14 pages, Kyoto University KUCP-0061/9

    Dispersionless scalar integrable hierarchies, Whitham hierarchy and the quasi-classical dbar-dressing method

    Get PDF
    The quasi-classical limit of the scalar nonlocal dbar-problem is derived and a quasi-classical version of the dbar-dressing method is presented. Dispersionless KP, mKP and 2DTL hierarchies are discussed as illustrative examples. It is shown that the universal Whitham hierarchy it is nothing but the ring of symmetries for the quasi-classical dbar-problem. The reduction problem is discussed and, in particular, the d2DTL equation of B type is derived.Comment: LaTex file,19 page

    Kernel Formula Approach to the Universal Whitham Hierarchy

    Full text link
    We derive the dispersionless Hirota equations of the universal Whitham hierarchy from the kernel formula approach proposed by Carroll and Kodama. Besides, we also verify the associativity equations in this hierarchy from the dispersionless Hirota equations and give a realization of the associative algebra with structure constants expressed in terms of the residue formulas.Comment: 18 page

    qq-analogue of modified KP hierarchy and its quasi-classical limit

    Full text link
    A qq-analogue of the tau function of the modified KP hierarchy is defined by a change of independent variables. This tau function satisfies a system of bilinear qq-difference equations. These bilinear equations are translated to the language of wave functions, which turn out to satisfy a system of linear qq-difference equations. These linear qq-difference equations are used to formulate the Lax formalism and the description of quasi-classical limit. These results can be generalized to a qq-analogue of the Toda hierarchy. The results on the qq-analogue of the Toda hierarchy might have an application to the random partition calculus in gauge theories and topological strings.Comment: latex2e, a4 paper 15 pages, no figure; (v2) a few references are adde

    An hbar-expansion of the Toda hierarchy: a recursive construction of solutions

    Full text link
    A construction of general solutions of the \hbar-dependent Toda hierarchy is presented. The construction is based on a Riemann-Hilbert problem for the pairs (L,M) and (\bar L,\bar M) of Lax and Orlov-Schulman operators. This Riemann-Hilbert problem is translated to the language of the dressing operators W and \bar W. The dressing operators are set in an exponential form as W = e^{X/\hbar} and \bar W = e^{\phi/\hbar}e^{\bar X/\hbar}, and the auxiliary operators X,\bar X and the function \phi are assumed to have \hbar-expansions X = X_0 + \hbar X_1 + ..., \bar X = \bar X_0 + \hbar\bar X_1 + ... and \phi = \phi_0 + \hbar\phi_1 + .... The coefficients of these expansions turn out to satisfy a set of recursion relations. X,\bar X and \phi are recursively determined by these relations. Moreover, the associated wave functions are shown to have the WKB form \Psi = e^{S/\hbar} and \bar\Psi = e^{\bar S/\hbar}, which leads to an \hbar-expansion of the logarithm of the tau function.Comment: 37 pages, no figures. arXiv admin note: substantial text overlap with arXiv:0912.486

    S-functions, reductions and hodograph solutions of the r-th dispersionless modified KP and Dym hierarchies

    Get PDF
    We introduce an S-function formulation for the recently found r-th dispersionless modified KP and r-th dispersionless Dym hierarchies, giving also a connection of these SS-functions with the Orlov functions of the hierarchies. Then, we discuss a reduction scheme for the hierarchies that together with the SS-function formulation leads to hodograph systems for the associated solutions. We consider also the connection of these reductions with those of the dispersionless KP hierarchy and with hydrodynamic type systems. In particular, for the 1-component and 2-component reduction we derive, for both hierarchies, ample sets of examples of explicit solutions.Comment: 35 pages, uses AMS-Latex, Hyperref, Geometry, Array and Babel package

    Dispersionless integrable equations as coisotropic deformations. Extensions and reductions

    Full text link
    Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systInterpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level. ems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level.Comment: 21 pages, misprints correcte

    Conformal Mappings and Dispersionless Toda hierarchy

    Full text link
    Let D\mathfrak{D} be the space consists of pairs (f,g)(f,g), where ff is a univalent function on the unit disc with f(0)=0f(0)=0, gg is a univalent function on the exterior of the unit disc with g()=g(\infty)=\infty and f(0)g()=1f'(0)g'(\infty)=1. In this article, we define the time variables tn,nZt_n, n\in \Z, on D\mathfrak{D} which are holomorphic with respect to the natural complex structure on D\mathfrak{D} and can serve as local complex coordinates for D\mathfrak{D}. We show that the evolutions of the pair (f,g)(f,g) with respect to these time coordinates are governed by the dispersionless Toda hierarchy flows. An explicit tau function is constructed for the dispersionless Toda hierarchy. By restricting D\mathfrak{D} to the subspace Σ\Sigma consists of pairs where f(w)=1/g(1/wˉ)ˉf(w)=1/\bar{g(1/\bar{w})}, we obtain the integrable hierarchy of conformal mappings considered by Wiegmann and Zabrodin \cite{WZ}. Since every C1C^1 homeomorphism γ\gamma of the unit circle corresponds uniquely to an element (f,g)(f,g) of D\mathfrak{D} under the conformal welding γ=g1f\gamma=g^{-1}\circ f, the space HomeoC(S1)\text{Homeo}_{C}(S^1) can be naturally identified as a subspace of D\mathfrak{D} characterized by f(S1)=g(S1)f(S^1)=g(S^1). We show that we can naturally define complexified vector fields \pa_n, n\in \Z on HomeoC(S1)\text{Homeo}_{C}(S^1) so that the evolutions of (f,g)(f,g) on HomeoC(S1)\text{Homeo}_{C}(S^1) with respect to \pa_n satisfy the dispersionless Toda hierarchy. Finally, we show that there is a similar integrable structure for the Riemann mappings (f1,g1)(f^{-1}, g^{-1}). Moreover, in the latter case, the time variables are Fourier coefficients of γ\gamma and 1/γ11/\gamma^{-1}.Comment: 23 pages. This is to replace the previous preprint arXiv:0808.072

    Second and Third Order Observables of the Two-Matrix Model

    Get PDF
    In this paper we complement our recent result on the explicit formula for the planar limit of the free energy of the two-matrix model by computing the second and third order observables of the model in terms of canonical structures of the underlying genus g spectral curve. In particular we provide explicit formulas for any three-loop correlator of the model. Some explicit examples are worked out.Comment: 22 pages, v2 with added references and minor correction
    corecore