1,340 research outputs found
Dispersionless Toda hierarchy and two-dimensional string theory
The dispersionless Toda hierarchy turns out to lie in the heart of a recently
proposed Landau-Ginzburg formulation of two-dimensional string theory at
self-dual compactification radius. The dynamics of massless tachyons with
discrete momenta is shown to be encoded into the structure of a special
solution of this integrable hierarchy. This solution is obtained by solving a
Riemann-Hilbert problem. Equivalence to the tachyon dynamics is proven by
deriving recursion relations of tachyon correlation functions in the machinery
of the dispersionless Toda hierarchy. Fundamental ingredients of the
Landau-Ginzburg formulation, such as Landau-Ginzburg potentials and tachyon
Landau-Ginzburg fields, are translated into the language of the Lax formalism.
Furthermore, a wedge algebra is pointed out to exist behind the Riemann-Hilbert
problem, and speculations on its possible role as generators of ``extra''
states and fields are presented.Comment: LaTeX 21 pages, KUCP-0067 (typos are corrected and a brief note is
added
Integrable hierarchy underlying topological Landau-Ginzburg models of D-type
A universal integrable hierarchy underlying topological Landau-Ginzburg
models of D-tye is presented. Like the dispersionless Toda hierarchy, the new
hierarchy has two distinct (``positive" and ``negative") set of flows. Special
solutions corresponding to topological Landau-Ginzburg models of D-type are
characterized by a Riemann-Hilbert problem, which can be converted into a
generalized hodograph transformation. This construction gives an embedding of
the finite dimensional small phase space of these models into the full space of
flows of this hierarchy. One of flat coordinates in the small phase space turns
out to be identical to the first ``negative" time variable of the hierarchy,
whereas the others belong to the ``positive" flows.Comment: 14 pages, Kyoto University KUCP-0061/9
Dispersionless scalar integrable hierarchies, Whitham hierarchy and the quasi-classical dbar-dressing method
The quasi-classical limit of the scalar nonlocal dbar-problem is derived and
a quasi-classical version of the dbar-dressing method is presented.
Dispersionless KP, mKP and 2DTL hierarchies are discussed as illustrative
examples. It is shown that the universal Whitham hierarchy it is nothing but
the ring of symmetries for the quasi-classical dbar-problem. The reduction
problem is discussed and, in particular, the d2DTL equation of B type is
derived.Comment: LaTex file,19 page
Kernel Formula Approach to the Universal Whitham Hierarchy
We derive the dispersionless Hirota equations of the universal Whitham
hierarchy from the kernel formula approach proposed by Carroll and Kodama.
Besides, we also verify the associativity equations in this hierarchy from the
dispersionless Hirota equations and give a realization of the associative
algebra with structure constants expressed in terms of the residue formulas.Comment: 18 page
-analogue of modified KP hierarchy and its quasi-classical limit
A -analogue of the tau function of the modified KP hierarchy is defined by
a change of independent variables. This tau function satisfies a system of
bilinear -difference equations. These bilinear equations are translated to
the language of wave functions, which turn out to satisfy a system of linear
-difference equations. These linear -difference equations are used to
formulate the Lax formalism and the description of quasi-classical limit. These
results can be generalized to a -analogue of the Toda hierarchy. The results
on the -analogue of the Toda hierarchy might have an application to the
random partition calculus in gauge theories and topological strings.Comment: latex2e, a4 paper 15 pages, no figure; (v2) a few references are
adde
An hbar-expansion of the Toda hierarchy: a recursive construction of solutions
A construction of general solutions of the \hbar-dependent Toda hierarchy is
presented. The construction is based on a Riemann-Hilbert problem for the pairs
(L,M) and (\bar L,\bar M) of Lax and Orlov-Schulman operators. This
Riemann-Hilbert problem is translated to the language of the dressing operators
W and \bar W. The dressing operators are set in an exponential form as W =
e^{X/\hbar} and \bar W = e^{\phi/\hbar}e^{\bar X/\hbar}, and the auxiliary
operators X,\bar X and the function \phi are assumed to have \hbar-expansions X
= X_0 + \hbar X_1 + ..., \bar X = \bar X_0 + \hbar\bar X_1 + ... and \phi =
\phi_0 + \hbar\phi_1 + .... The coefficients of these expansions turn out to
satisfy a set of recursion relations. X,\bar X and \phi are recursively
determined by these relations. Moreover, the associated wave functions are
shown to have the WKB form \Psi = e^{S/\hbar} and \bar\Psi = e^{\bar S/\hbar},
which leads to an \hbar-expansion of the logarithm of the tau function.Comment: 37 pages, no figures. arXiv admin note: substantial text overlap with
arXiv:0912.486
S-functions, reductions and hodograph solutions of the r-th dispersionless modified KP and Dym hierarchies
We introduce an S-function formulation for the recently found r-th
dispersionless modified KP and r-th dispersionless Dym hierarchies, giving also
a connection of these -functions with the Orlov functions of the
hierarchies. Then, we discuss a reduction scheme for the hierarchies that
together with the -function formulation leads to hodograph systems for the
associated solutions. We consider also the connection of these reductions with
those of the dispersionless KP hierarchy and with hydrodynamic type systems. In
particular, for the 1-component and 2-component reduction we derive, for both
hierarchies, ample sets of examples of explicit solutions.Comment: 35 pages, uses AMS-Latex, Hyperref, Geometry, Array and Babel
package
Dispersionless integrable equations as coisotropic deformations. Extensions and reductions
Interpretation of dispersionless integrable hierarchies as equations of
coisotropic deformations for certain algebras and other algebraic structures
like Jordan triple systInterpretation of dispersionless integrable hierarchies
as equations of coisotropic deformations for certain algebras and other
algebraic structures like Jordan triple systems is discussed. Several
generalizations are considered. Stationary reductions of the dispersionless
integrable equations are shown to be connected with the dynamical systems on
the plane completely integrable on a fixed energy level. ems is discussed.
Several generalizations are considered. Stationary reductions of the
dispersionless integrable equations are shown to be connected with the
dynamical systems on the plane completely integrable on a fixed energy level.Comment: 21 pages, misprints correcte
Conformal Mappings and Dispersionless Toda hierarchy
Let be the space consists of pairs , where is a
univalent function on the unit disc with , is a univalent function
on the exterior of the unit disc with and
. In this article, we define the time variables , on which are holomorphic with respect to the natural
complex structure on and can serve as local complex coordinates
for . We show that the evolutions of the pair with
respect to these time coordinates are governed by the dispersionless Toda
hierarchy flows. An explicit tau function is constructed for the dispersionless
Toda hierarchy. By restricting to the subspace consists
of pairs where , we obtain the integrable hierarchy
of conformal mappings considered by Wiegmann and Zabrodin \cite{WZ}. Since
every homeomorphism of the unit circle corresponds uniquely to
an element of under the conformal welding
, the space can be naturally
identified as a subspace of characterized by . We
show that we can naturally define complexified vector fields \pa_n, n\in \Z
on so that the evolutions of on
with respect to \pa_n satisfy the dispersionless Toda
hierarchy. Finally, we show that there is a similar integrable structure for
the Riemann mappings . Moreover, in the latter case, the time
variables are Fourier coefficients of and .Comment: 23 pages. This is to replace the previous preprint arXiv:0808.072
Second and Third Order Observables of the Two-Matrix Model
In this paper we complement our recent result on the explicit formula for the
planar limit of the free energy of the two-matrix model by computing the second
and third order observables of the model in terms of canonical structures of
the underlying genus g spectral curve. In particular we provide explicit
formulas for any three-loop correlator of the model. Some explicit examples are
worked out.Comment: 22 pages, v2 with added references and minor correction
- …