3,383 research outputs found
Differential inflammation-mediated function of prokineticin 2 in the synovial fibroblasts of patients with rheumatoid arthritis compared with osteoarthritis
Prokineticin 2 (PK2) is a secreted protein involved in several pathological and physiological processes, including the regulation of inflammation, sickness behaviors, and circadian rhythms. Recently, it was reported that PK2 is associated with the pathogenesis of collagen-induced arthritis in mice. However, the role of PK2 in the pathogenesis of rheumatoid arthritis (RA) or osteoarthritis (OA) remains unknown. In this study, we collected synovial tissue, plasma, synovial fluid, and synovial fibroblasts (SF) from RA and OA patients to analyze the function of PK2 using immunohistochemistry, enzyme-linked immunosorbent assays, and tissue superfusion studies. PK2 and its receptors prokineticin receptor (PKR) 1 and 2 were expressed in RA and OA synovial tissues. PKR1 expression was downregulated in RA synovial tissue compared with OA synovial tissue. The PK2 concentration was higher in RA synovial fluid than in OA synovial fluid but similar between RA and OA plasma. PK2 suppressed the production of IL-6 from TNFα-prestimulated OA-SF, and this effect was attenuated in TNFα-prestimulated RA-SF. This phenomenon was accompanied by the upregulation of PKR1 in OA-SF. This study provides a new model to explain some aspects underlying the chronicity of inflammation in RA
Possible Dibaryons with Strangeness s=-5
In the framework of , the binding energy of the six quark system with
strangeness s=-5 is systematically investigated under the SU(3) chiral
constituent quark model. The single channel calculation with
spins S=0 and 3 and the coupled and channel
calculation with spins S=1 and 2 are considered, respectively. The results show
following observations: In the spin=0 case, is a bound dibaryon
with the binding energy being . In the S=1 case,
is also a bound dibaryon. Its binding energy is ranged from to . In the S=2 and S=3 cases, no evidence of bound dibaryons
are found. The phase shifts and scattering lengths in the S=0 and S=1 cases are
also given.Comment: 10 pages, late
Fractal Analysis of Protein Potential Energy Landscapes
The fractal properties of the total potential energy V as a function of time
t are studied for a number of systems, including realistic models of proteins
(PPT, BPTI and myoglobin). The fractal dimension of V(t), characterized by the
exponent \gamma, is almost independent of temperature and increases with time,
more slowly the larger the protein. Perhaps the most striking observation of
this study is the apparent universality of the fractal dimension, which depends
only weakly on the type of molecular system. We explain this behavior by
assuming that fractality is caused by a self-generated dynamical noise, a
consequence of intermode coupling due to anharmonicity. Global topological
features of the potential energy landscape are found to have little effect on
the observed fractal behavior.Comment: 17 pages, single spaced, including 12 figure
Cronin Effect in Hadron Production off Nuclei
Recent data from RHIC for high- hadrons in gold-gold collisions raised
again the long standing problem of quantitatively understanding the Cronin
effect, i.e. nuclear enhancement of high- hadrons due to multiple
interactions in nuclear matter. In nucleus-nucleus collisions this effect has
to be reliably calculated as baseline for a signal of new physics in high-
hadron production. The only possibility to test models is to compare with
available data for collisions, however, all existing models for the Cronin
effect rely on a fit to the data to be explained. We develop a phenomenological
description based on the light-cone QCD-dipole approach which allows to explain
available data without fitting to them and to provide predictions for
collisions at RHIC and LHC. We point out that the mechanism causing Cronin
effect drastically changes between the energies of fixed target experiments and
RHIC-LHC. High- hadrons are produced incoherently on different nucleons at
low energies, whereas the production amplitudes interfere if the energy is
sufficiently high.Comment: the final version to appear in Phys. Rev. Let
Image resonance in the many-body density of states at a metal surface
The electronic properties of a semi-infinite metal surface without a bulk gap are studied by a formalism that is able to account for the continuous spectrum of the system. The density of states at the surface is calculated within the GW approximation of many-body perturbation theory. We demonstrate the presence of an unoccupied surface resonance peaked at the position of the first image state. The resonance encompasses the whole Rydberg series of image states and cannot be resolved into individual peaks. Its origin is the shift in spectral weight when many-body correlation effects are taken into account
Homogeneous Gold Catalysis through Relativistic Effects: Addition of Water to Propyne
In the catalytic addition of water to propyne the Au(III) catalyst is not
stable under non-relativistic conditions and dissociates into a Au(I) compound
and Cl2. This implies that one link in the chain of events in the catalytic
cycle is broken and relativity may well be seen as the reason why Au(III)
compounds are effective catalysts.Comment: 12 pages, 3 figures, 1 tabl
Open Charm Production in an Equilibrating Parton Plasma
Open charm production during the equilibration of a gluon dominated parton
plasma is calculated, with both the time-dependent temperature and parton
densities given by a set of rate equations. Including pre-thermal production,
the total enhancement of open charm production over the initial gluon fusion
depends sensitively on the initial parton density and the effective
temperature. The dependence of the pre-thermal charm production on the
space-momentum correlation in the initial parton phase-space distribution is
also discussed.Comment: 23 pages REVTEX, 7 uuencoded postscript figures include
Lifetimes of image-potential states on copper surfaces
The lifetime of image states, which represent a key quantity to probe the
coupling of surface electronic states with the solid substrate, have been
recently determined for quantum numbers on Cu(100) by using
time-resolved two-photon photoemission in combination with the coherent
excitation of several states (U. H\"ofer et al, Science 277, 1480 (1997)). We
here report theoretical investigations of the lifetime of image states on
copper surfaces. We evaluate the lifetimes from the knowledge of the
self-energy of the excited quasiparticle, which we compute within the GW
approximation of many-body theory. Single-particle wave functions are obtained
by solving the Schr\"odinger equation with a realistic one-dimensional model
potential, and the screened interaction is evaluated in the random-phase
approximation (RPA). Our results are in good agreement with the experimentally
determined decay times.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let
- …