9,900 research outputs found

    Velocity field distributions due to ideal line vortices

    Get PDF
    We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid circular boundary. We focus on ``nearest neighbor'' contributions that result from vortices that fall (randomly) very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a non-Gaussian high-velocity ``tail'' on an otherwise Gaussian distribution function for the Eulerian velocity field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability distributions that are uniform inside the circle, but instead correspond to both higher and lower mean-field energies than those associated with the uniform vorticity distribution. We find substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E (http://pre.aps.org/) in May 200

    Bearing tester data compilation, analysis and reporting and bearing math modeling, volume 1

    Get PDF
    Thermal and mechanical models of high speed angular contact ball bearings operating in LOX and LN2 were developed and verified with limited test data in an effort to further understand the parameters that determine or effect the SSME turbopump bearing operational characteristics and service life. The SHABERTH bearing analysis program which was adapted to evaluate shaft bearing systems in cryogenics is not capable of accommodating varying thermal properties and two phase flow. A bearing model with this capability was developed using the SINDA thermal analyzer. Iteration between the SHABERTH and the SINDA models enable the establishment of preliminary bounds for stable operation in LN2. These limits were established in terms of fluid flow, fluid inlet temperature, and axial load for a shaft speed of 30,000 RPM

    Active Sampling-based Binary Verification of Dynamical Systems

    Full text link
    Nonlinear, adaptive, or otherwise complex control techniques are increasingly relied upon to ensure the safety of systems operating in uncertain environments. However, the nonlinearity of the resulting closed-loop system complicates verification that the system does in fact satisfy those requirements at all possible operating conditions. While analytical proof-based techniques and finite abstractions can be used to provably verify the closed-loop system's response at different operating conditions, they often produce conservative approximations due to restrictive assumptions and are difficult to construct in many applications. In contrast, popular statistical verification techniques relax the restrictions and instead rely upon simulations to construct statistical or probabilistic guarantees. This work presents a data-driven statistical verification procedure that instead constructs statistical learning models from simulated training data to separate the set of possible perturbations into "safe" and "unsafe" subsets. Binary evaluations of closed-loop system requirement satisfaction at various realizations of the uncertainties are obtained through temporal logic robustness metrics, which are then used to construct predictive models of requirement satisfaction over the full set of possible uncertainties. As the accuracy of these predictive statistical models is inherently coupled to the quality of the training data, an active learning algorithm selects additional sample points in order to maximize the expected change in the data-driven model and thus, indirectly, minimize the prediction error. Various case studies demonstrate the closed-loop verification procedure and highlight improvements in prediction error over both existing analytical and statistical verification techniques.Comment: 23 page

    Spatial Current Patterns, Dephasing and Current Imaging in Graphene Nanoribbons

    Full text link
    Using the non-equilibrium Keldysh Green's function formalism, we investigate the local, non-equilibrium charge transport in graphene nanoribbons (GNRs). In particular, we demonstrate that the spatial current patterns associated with discrete transmission resonances sensitively depend on the GNRs' geometry, size, and aspect ratio, the location and number of leads, and the presence of dephasing. We identify a relation between the spatial form of the current patterns, and the number of degenerate energy states participating in the charge transport. Furthermore, we demonstrate a principle of superposition for the conductance and spatial current patterns in multiple-lead configurations. We demonstrate that scanning tunneling microscopy (STM) can be employed to image spatial current paths in GNR with atomic resolution, providing important insight into the form of local charge transport. Finally, we investigate the effects of dephasing on the spatial current patterns, and show that with decreasing dephasing time, the current patterns evolve smoothly from those of a ballistic quantum network to those of classical resistor network.Comment: 25 pages, 12 figure

    Simple choreographies of the planar Newtonian NN-body Problem

    Full text link
    In the NN-body problem, a simple choreography is a periodic solution, where all masses chase each other on a single loop. In this paper we prove that for the planar Newtonian NN-body problem with equal masses, N3N \ge 3, there are at least 2N3+2[(N3)/2]2^{N-3} + 2^{[(N-3)/2]} different main simple choreographies. This confirms a conjecture given by Chenciner and etc. in \cite{CGMS02}.Comment: 31pages, 6 figures. Refinements in notations and proof

    Magnetohydrodynamic activity inside a sphere

    Full text link
    We present a computational method to solve the magnetohydrodynamic equations in spherical geometry. The technique is fully nonlinear and wholly spectral, and uses an expansion basis that is adapted to the geometry: Chandrasekhar-Kendall vector eigenfunctions of the curl. The resulting lower spatial resolution is somewhat offset by being able to build all the boundary conditions into each of the orthogonal expansion functions and by the disappearance of any difficulties caused by singularities at the center of the sphere. The results reported here are for mechanically and magnetically isolated spheres, although different boundary conditions could be studied by adapting the same method. The intent is to be able to study the nonlinear dynamical evolution of those aspects that are peculiar to the spherical geometry at only moderate Reynolds numbers. The code is parallelized, and will preserve to high accuracy the ideal magnetohydrodynamic (MHD) invariants of the system (global energy, magnetic helicity, cross helicity). Examples of results for selective decay and mechanically-driven dynamo simulations are discussed. In the dynamo cases, spontaneous flips of the dipole orientation are observed.Comment: 15 pages, 19 figures. Improved figures, in press in Physics of Fluid

    Pulsational Mapping of Calcium Across the Surface of a White Dwarf

    Get PDF
    We constrain the distribution of calcium across the surface of the white dwarf star G29-38 by combining time series spectroscopy from Gemini-North with global time series photometry from the Whole Earth Telescope. G29-38 is actively accreting metals from a known debris disk. Since the metals sink significantly faster than they mix across the surface, any inhomogeneity in the accretion process will appear as an inhomogeneity of the metals on the surface of the star. We measure the flux amplitudes and the calcium equivalent width amplitudes for two large pulsations excited on G29-38 in 2008. The ratio of these amplitudes best fits a model for polar accretion of calcium and rules out equatorial accretion.Comment: Accepted to the Astrophysical Journal. 16 pages, 10 figures

    \u3cem\u3eMy Crown and Glory\u3c/em\u3e: Community, Identity, Culture, and Black Women’s Concerns of Hair Product-Related Breast Cancer Risk

    Get PDF
    Breast cancer (BC) incidence rates for Black and non-Hispanic White women have recently converged; however, Black women continue to die at higher rates from the disease. Black women also use hair products containing hormonally active chemicals at higher rates than other races and ethnic groups. Studies now link chemical components in hair and personal care products to breast cancer risk. Using a community-based participatory research approach, this qualitative study explored community concerns about the role of hair products on breast cancer risk. Focus groups and key informant interviews using triangulation to assure relevant perspectives (women with and without breast cancer as well as younger and older women of differing SES, stylists) explored women’s perceived risk and knowledge of breast cancer risk factors. Data analysis used grounded theory methods of coding facilitated by QDA-Miner. Findings from 91 participants indicated varying levels of awareness but near universal concerns about the potential link of hair products to BC. Breast cancer is a significant concern for Black women and their loved ones. While women were concerned and some respondents believed ingredients in hair products may be harmful to their health, they wrestled with the idea of making changes as hair for most is aligned with beauty, individuality, and identity. For many altering their product use patterns to potentially less risky choices pits health against identity. Health education interventions to minimize harmful hair product usage must acknowledge and incorporate cultural normative beliefs of hair for Black women
    corecore