9,900 research outputs found
Velocity field distributions due to ideal line vortices
We evaluate numerically the velocity field distributions produced by a
bounded, two-dimensional fluid model consisting of a collection of parallel
ideal line vortices. We sample at many spatial points inside a rigid circular
boundary. We focus on ``nearest neighbor'' contributions that result from
vortices that fall (randomly) very close to the spatial points where the
velocity is being sampled. We confirm that these events lead to a non-Gaussian
high-velocity ``tail'' on an otherwise Gaussian distribution function for the
Eulerian velocity field. We also investigate the behavior of distributions that
do not have equilibrium mean-field probability distributions that are uniform
inside the circle, but instead correspond to both higher and lower mean-field
energies than those associated with the uniform vorticity distribution. We find
substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E
(http://pre.aps.org/) in May 200
Bearing tester data compilation, analysis and reporting and bearing math modeling, volume 1
Thermal and mechanical models of high speed angular contact ball bearings operating in LOX and LN2 were developed and verified with limited test data in an effort to further understand the parameters that determine or effect the SSME turbopump bearing operational characteristics and service life. The SHABERTH bearing analysis program which was adapted to evaluate shaft bearing systems in cryogenics is not capable of accommodating varying thermal properties and two phase flow. A bearing model with this capability was developed using the SINDA thermal analyzer. Iteration between the SHABERTH and the SINDA models enable the establishment of preliminary bounds for stable operation in LN2. These limits were established in terms of fluid flow, fluid inlet temperature, and axial load for a shaft speed of 30,000 RPM
Active Sampling-based Binary Verification of Dynamical Systems
Nonlinear, adaptive, or otherwise complex control techniques are increasingly
relied upon to ensure the safety of systems operating in uncertain
environments. However, the nonlinearity of the resulting closed-loop system
complicates verification that the system does in fact satisfy those
requirements at all possible operating conditions. While analytical proof-based
techniques and finite abstractions can be used to provably verify the
closed-loop system's response at different operating conditions, they often
produce conservative approximations due to restrictive assumptions and are
difficult to construct in many applications. In contrast, popular statistical
verification techniques relax the restrictions and instead rely upon
simulations to construct statistical or probabilistic guarantees. This work
presents a data-driven statistical verification procedure that instead
constructs statistical learning models from simulated training data to separate
the set of possible perturbations into "safe" and "unsafe" subsets. Binary
evaluations of closed-loop system requirement satisfaction at various
realizations of the uncertainties are obtained through temporal logic
robustness metrics, which are then used to construct predictive models of
requirement satisfaction over the full set of possible uncertainties. As the
accuracy of these predictive statistical models is inherently coupled to the
quality of the training data, an active learning algorithm selects additional
sample points in order to maximize the expected change in the data-driven model
and thus, indirectly, minimize the prediction error. Various case studies
demonstrate the closed-loop verification procedure and highlight improvements
in prediction error over both existing analytical and statistical verification
techniques.Comment: 23 page
Spatial Current Patterns, Dephasing and Current Imaging in Graphene Nanoribbons
Using the non-equilibrium Keldysh Green's function formalism, we investigate
the local, non-equilibrium charge transport in graphene nanoribbons (GNRs). In
particular, we demonstrate that the spatial current patterns associated with
discrete transmission resonances sensitively depend on the GNRs' geometry,
size, and aspect ratio, the location and number of leads, and the presence of
dephasing. We identify a relation between the spatial form of the current
patterns, and the number of degenerate energy states participating in the
charge transport. Furthermore, we demonstrate a principle of superposition for
the conductance and spatial current patterns in multiple-lead configurations.
We demonstrate that scanning tunneling microscopy (STM) can be employed to
image spatial current paths in GNR with atomic resolution, providing important
insight into the form of local charge transport. Finally, we investigate the
effects of dephasing on the spatial current patterns, and show that with
decreasing dephasing time, the current patterns evolve smoothly from those of a
ballistic quantum network to those of classical resistor network.Comment: 25 pages, 12 figure
Recommended from our members
Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling.
Leiomyosarcoma (LMS) is a soft tissue tumor with a significant degree of morphologic and molecular heterogeneity. We used integrative molecular profiling to discover and characterize molecular subtypes of LMS. Gene expression profiling was performed on 51 LMS samples. Unsupervised clustering showed three reproducible LMS clusters. Array comparative genomic hybridization (aCGH) was performed on 20 LMS samples and showed that the molecular subtypes defined by gene expression showed distinct genomic changes. Tumors from the muscle-enriched cluster showed significantly increased copy number changes (P=0.04). A majority of the muscle-enriched cases showed loss at 16q24, which contains Fanconi anemia, complementation group A, known to have an important role in DNA repair, and loss at 1p36, which contains PRDM16, of which loss promotes muscle differentiation. Immunohistochemistry (IHC) was performed on LMS tissue microarrays (n=377) for five markers with high levels of messenger RNA in the muscle-enriched cluster (ACTG2, CASQ2, SLMAP, CFL2 and MYLK) and showed significantly correlated expression of the five proteins (all pairwise P<0.005). Expression of the five markers was associated with improved disease-specific survival in a multivariate Cox regression analysis (P<0.04). In this analysis that combined gene expression profiling, aCGH and IHC, we characterized distinct molecular LMS subtypes, provided insight into their pathogenesis, and identified prognostic biomarkers
Simple choreographies of the planar Newtonian -body Problem
In the -body problem, a simple choreography is a periodic solution, where
all masses chase each other on a single loop. In this paper we prove that for
the planar Newtonian -body problem with equal masses, , there are
at least different main simple choreographies. This
confirms a conjecture given by Chenciner and etc. in \cite{CGMS02}.Comment: 31pages, 6 figures. Refinements in notations and proof
Magnetohydrodynamic activity inside a sphere
We present a computational method to solve the magnetohydrodynamic equations
in spherical geometry. The technique is fully nonlinear and wholly spectral,
and uses an expansion basis that is adapted to the geometry:
Chandrasekhar-Kendall vector eigenfunctions of the curl. The resulting lower
spatial resolution is somewhat offset by being able to build all the boundary
conditions into each of the orthogonal expansion functions and by the
disappearance of any difficulties caused by singularities at the center of the
sphere. The results reported here are for mechanically and magnetically
isolated spheres, although different boundary conditions could be studied by
adapting the same method. The intent is to be able to study the nonlinear
dynamical evolution of those aspects that are peculiar to the spherical
geometry at only moderate Reynolds numbers. The code is parallelized, and will
preserve to high accuracy the ideal magnetohydrodynamic (MHD) invariants of the
system (global energy, magnetic helicity, cross helicity). Examples of results
for selective decay and mechanically-driven dynamo simulations are discussed.
In the dynamo cases, spontaneous flips of the dipole orientation are observed.Comment: 15 pages, 19 figures. Improved figures, in press in Physics of Fluid
Pulsational Mapping of Calcium Across the Surface of a White Dwarf
We constrain the distribution of calcium across the surface of the white
dwarf star G29-38 by combining time series spectroscopy from Gemini-North with
global time series photometry from the Whole Earth Telescope. G29-38 is
actively accreting metals from a known debris disk. Since the metals sink
significantly faster than they mix across the surface, any inhomogeneity in the
accretion process will appear as an inhomogeneity of the metals on the surface
of the star. We measure the flux amplitudes and the calcium equivalent width
amplitudes for two large pulsations excited on G29-38 in 2008. The ratio of
these amplitudes best fits a model for polar accretion of calcium and rules out
equatorial accretion.Comment: Accepted to the Astrophysical Journal. 16 pages, 10 figures
\u3cem\u3eMy Crown and Glory\u3c/em\u3e: Community, Identity, Culture, and Black Women’s Concerns of Hair Product-Related Breast Cancer Risk
Breast cancer (BC) incidence rates for Black and non-Hispanic White women have recently converged; however, Black women continue to die at higher rates from the disease. Black women also use hair products containing hormonally active chemicals at higher rates than other races and ethnic groups. Studies now link chemical components in hair and personal care products to breast cancer risk. Using a community-based participatory research approach, this qualitative study explored community concerns about the role of hair products on breast cancer risk. Focus groups and key informant interviews using triangulation to assure relevant perspectives (women with and without breast cancer as well as younger and older women of differing SES, stylists) explored women’s perceived risk and knowledge of breast cancer risk factors. Data analysis used grounded theory methods of coding facilitated by QDA-Miner. Findings from 91 participants indicated varying levels of awareness but near universal concerns about the potential link of hair products to BC. Breast cancer is a significant concern for Black women and their loved ones. While women were concerned and some respondents believed ingredients in hair products may be harmful to their health, they wrestled with the idea of making changes as hair for most is aligned with beauty, individuality, and identity. For many altering their product use patterns to potentially less risky choices pits health against identity. Health education interventions to minimize harmful hair product usage must acknowledge and incorporate cultural normative beliefs of hair for Black women
- …