2,436 research outputs found

    Excitation of Hydrogen Atom in Fast Encounter with Negative Hydrogen Ion

    Get PDF

    Study of QCD generalized ghost dark energy in FRW universe

    Full text link
    A phenomenological generalized ghost dark energy model has been studied under the framework of FRW universe. In ghost dark energy model the energy density depends linearly on Hubble parameter (H) but in this dark energy model, the energy density contains a the sub-leading term which is depends on O(H2)\mathcal{O} (H^2), so the energy density takes the form ρD=αH+βH2\rho_D=\alpha H+ \beta H^2, where α\alpha and β\beta are the constants. The solutions of the Friedman equation of our model leads to a stable universe. We have fitted our model with the present observational data including Stern data set. With the help of best fit results we find the adiabatic sound speed remains positive throughout the cosmic evolution, that claims the stability of the model. The flipping of the signature of deceleration parameter at the value of scale factor a=0.5a=0.5 indicates that the universe is at the stage of acceleration i.e. de Sitter phase of the universe at late time. Our model shows that the acceleration of the universe begin at redshift zace0.617z_{ace}\approx 0.617 and the model is also consistent with the current observational data.Comment: 9 pages, 9 figure

    Compact stars in f(R,T)f(R,T) gravity

    Full text link
    In the present paper we generate a set of solutions describing the interior of a compact star under f(R,T)f(R,T) theory of gravity which admits conformal motion. We consider the equation of state (EOS) p=ωρp=\omega\rho with 0<ω<10<\omega<1 for the fluid distribution consisting normal matter, ω\omega being the EOS parameter. We therefore explore several aspects of the model analytically along with graphical representations to check the physical validity as well as acceptability of it within specified observational constraint in connection to a dozen of the compact star candidates. It is shown from the presented model that these objects are nothing but radiating compact stars.Comment: 16 pages, 6 figures, 1 table, substantial modification based on referee repor

    Charged anisotropic strange stars in Finslerian geometry

    Full text link
    We investigate a simplified model for the strange stars in the framework of Finslerian spacetime geometry, composed of charged fluid. It is considered that the fluid consisting of three flavor quarks including a small amount of non-interacting electrons to maintain the chemical equilibrium and assumed that the fluid is compressible by nature. To obtain the simplified form of charged strange star we considered constant flag curvature. Based on geometry, we have developed the field equations within the localized charge distribution. We considered that the strange quarks distributed within the stellar system are compiled with the MIT bag model type of equation of state (EOS) and the charge distribution within the system follows a power law. We represent the exterior spacetime by the Finslerian Ressiner-Nordstr{\"o}m space-time. The maximum anisotropic stress is obtained at the surface of the system. Whether the system is in equilibrium or not, has been examined with respect to the Tolman-Oppenheimer-Volkoff (TOV) equation, Herrera cracking concept, different energy conditions and adiabatic index. We obtain that the total charge is of the order of 1020^{20} C and the corresponding electric field is of around 1022^{22} V/m. The central density and central pressure vary inversely with the charge. Varying the free parameter (charge constant) of the model, we find the generalized mass-radius variation of strange stars and determine the maximum limited mass with the corresponding radius. Furthermore, we also considered the variation of mass and radius against central density respectively.Comment: 21 pages, 13 figures, 4 table

    On the Conditions of Escape of Microwaves of Radio-Frequency Range from the Sun

    Get PDF
    corecore