1,278 research outputs found

    Determining masses of supersymmetric particles

    Full text link
    If supersymmetric particles are produced at the Large Hadron Collider it becomes very important not only to identify them, but also to determine their masses with the highest possible precision, since this may lead to an understanding of the SUSY-breaking mechanism and the physics at some higher scale. We here report on studies of how such mass measurements are obtained, and how the precision can be optimized.Comment: 11 pages, contribution to the proceedings "II. Southeastern European Workshop Challenges Beyond The Standard Model", 19-23 May 2005, Vrnjacka Banja, Serbi

    Resolving ambiguities in mass determinations at future colliders

    Full text link
    The measurements of kinematical endpoints, in cascade decays of supersymmetric particles, in principle allow for a determination of the masses of the unstable particles. However, in this procedure ambiguities often arise. We here illustrate how such ambiguities arise. They can be resolved by a precise determination of the LSP mass, provided by the Linear Collider.Comment: 6 pages, 6 figures, to appear in the proceedings of the 2005 International Linear Collider Workshop, Stanford, U.S.

    Mass Determination in Cascade Decays Using Shape Formulas

    Get PDF
    In SUSY scenarios with invisible LSP, sparticle masses can be determined from fits to the endpoints of invariant mass distributions. Here we discuss possible improvements by using the shapes of the distributions. Positive results are found for multiple-minima situations and for mass regions where the endpoints do not contain sufficient information to obtain the masses.Comment: to appear in Proceedings of SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 200

    Mass ambiguities in cascade decays

    Get PDF
    We review the use of invariant mass distributions in cascade decays to measure the masses of New Physics (NP) particles in scenarios where the final NP cascade particle is invisible. We extend earlier work by exploring further the problem of multiple solutions for the masses.Comment: 4 pages, 4 figures, to appear in the proceedings of the XXXIII International Conference on High Energy Physics (ICHEP'06), July 26 - August 2 2006, Mosco

    Reconstruction of τ~1\tilde{\tau}_{1} mass at the LHC

    Full text link
    The cascade mass reconstruction approach was used for mass reconstruction of the lightest stau produced at the LHC in the cascade decay g~→b~b→χ~20bb→τ~1τbb→χ~10ττbb\tilde{g} \to \tilde{b} b \to \tilde{\chi}_{2}^{0} b b \to \tilde{\tau}_{1} \tau b b \to \tilde{\chi}_{1}^{0} \tau \tau b b . The stau mass was reconstructed assuming that masses of gluino, bottom squark and two lightest neutralinos were reconstructed in advance. SUSY data sample sets for the SU3 model point containing 160k events each were generated which corresponded to an integrated luminosity of about 8fb−18 \rm fb^{-1} at 14 TeV. These events were passed through the AcerDET detector simulator, which parametrized the response of a generic LHC detector. The mass of the τ~1\tilde{\tau}_{1} was reconstructed with a precision of about 20% on average.Comment: 13 pages, 4 figures, corrected Table 6 and typos, added references for section

    Measurement of SUSY masses via cascade decays for SPS 1a

    Get PDF
    If R-parity conserving supersymmetry exists below the TeV-scale, new particles will be produced and decay in cascades at the LHC. The lightest supersymmetric particle will escape the detectors, thereby complicating the full reconstruction of the decay chains. In this paper we expand on existing methods for determining the masses of the particles in the cascade from endpoints of kinematical distributions. We perform scans in the mSUGRA parameter space to delimit the region where this method is applicable. From the examination of theoretical distributions for a wide selection of mass scenarios it is found that caution must be exerted when equating the theoretical endpoints with the experimentally obtainable ones. We provide analytic formulae for the masses in terms of the endpoints most readily available. Complications due to the composite nature of the endpoint expressions are discussed in relation to the detailed analysis of two points on the SPS 1a line. Finally we demonstrate how a Linear Collider measurement can improve dramatically on the precision of the masses obtained

    Kinematic Edges with Flavor Oscillation and Non-Zero Widths

    Full text link
    Kinematic edges in cascade decays provide a probe of the masses of new particles. In some new physics scenarios the decay chain involves intermediate particles of different flavors that can mix and oscillate. We discuss the implication of such oscillation, and in particular its interplay with the non-zero widths of the particles. We derive explicit formulae for differential decay rates involving both non-zero widths and oscillation, and show that in the case where the mass difference between the intermediate particle is of the order of their widths, both oscillation and width effects are important. An examination of the physical observables contained in these differential decay rates is provided. We calculate differential decay rates for cases in which the intermediate particles are either scalars or fermions.Comment: 28 pages, 6 figure

    Using Subsystem MT2 for Complete Mass Determinations in Decay Chains with Missing Energy at Hadron Colliders

    Get PDF
    We propose to use the MT2 concept to measure the masses of all particles in SUSY-like events with two unobservable, identical particles. To this end we generalize the usual notion of MT2 and define a new MT2(n,p,c) variable, which can be applied to various subsystem topologies, as well as the full event topology. We derive analytic formulas for its endpoint MT2{max}(n,p,c) as a function of the unknown test mass Mc of the final particle in the subchain and the transverse momentum pT due to radiation from the initial state. We show that the endpoint functions MT2{max}(n,p,c)(Mc,pT) may exhibit three different types of kinks and discuss the origin of each type. We prove that the subsystem MT2(n,p,c) variables by themselves already yield a sufficient number of measurements for a complete determination of the mass spectrum (including the overall mass scale). As an illustration, we consider the simple case of a decay chain with up to three heavy particles, X2 -> X1 -> X0, which is rather problematic for all other mass measurement methods. We propose three different MT2-based methods, each of which allows a complete determination of the masses of particles X0, X1 and X2. The first method only uses MT2(n,p,c) endpoint measurements at a single fixed value of the test mass Mc. In the second method the unknown mass spectrum is fitted to one or more endpoint functions MT2{max}(n,p,c)(Mc,pT) exhibiting a kink. The third method is hybrid, combining MT2 endpoints with measurements of kinematic edges in invariant mass distributions. As a practical application of our methods, we show that the dilepton W+W- and tt-bar samples at the Tevatron can be used for an independent determination of the masses of the top quark, the W boson and the neutrino, without any prior assumptions.Comment: 47 pages, 9 figures. revised version, published in JHEP. Major addition: a new appendix with the complete set of formulas for the MT2 endpoints as functions of the upstream transverse momentum pT and test mass M

    Initial determination of the spins of the gluino and squarks at LHC

    Full text link
    In principle particle spins can be measured from their production cross sections once their mass is approximately known. The method works in practice because spins are quantized and cross sections depend strongly on spins. It can be used to determine, for example, the spin of the top quark. Direct application of this method to supersymmetric theories will have to overcome the challenge of measuring mass at the LHC, which could require high statistics. In this article, we propose a method of measuring the spins of the colored superpatners by combining rate information for several channels and a set of kinematical variables, without directly measuring their masses. We argue that such a method could lead to an early determination of the spin of gluino and squarks. This method can be applied to the measurement of spin of other new physics particles and more general scenarios.Comment: 23 pages, 8 figures, minor change

    LHC/ILC Interplay in SUSY Searches

    Full text link
    Combined analyses at the Large Hadron Collider and at the International Linear Collider are important to reveal precisely the new physics model as, for instance, supersymmetry. Examples are presented where ILC results as input for LHC analyses could be crucial for the identification of signals as well as of the underlying model. The synergy of both colliders leads also to rather accurate SUSY parameter determination and powerful mass constraints even if the scalar particles have masses in the multi-TeV range.Comment: 5 pages, contribution to the proceedings of EPS0
    • 

    corecore