9 research outputs found

    Recent Perspectives in Ocular Drug Delivery

    Full text link

    The involvement of a Naâș- and Cl⁻-dependent transporter in the brain uptake of amantadine and rimantadine

    No full text
    Despite their structural similarity, the two anti-influenza adamantane compounds amantadine (AMA) and rimantadine (RIM) exhibit strikingly different rates of blood-brain barrier (BBB) transport. However, the molecular mechanisms facilitating the higher rate of in situ BBB transport of RIM, relative to AMA, remain unclear. The aim of this study, therefore, was to determine whether differences in the extent of brain uptake between these two adamantanes also occurred in vivo, and elucidate the potential carrier protein facilitating their BBB transport using immortalized human brain endothelial cells (hCMEC/D3). Following oral administration to Swiss Outbred mice, RIM exhibited 2.4-3.0-fold higher brain-to-plasma exposure compared to AMA, which was not attributable to differences in the degree of plasma protein binding. At concentrations representative of those obtained in vivo, the hCMEC/D3 cell uptake of RIM was 4.5-15.7-fold higher than that of AMA, with Michaelis-Menten constants 6.3 and 238.4 ÎŒM, respectively. The hCMEC/D3 cellular uptake of both AMA and RIM was inhibited by various cationic transporter inhibitors (cimetidine, choline, quinine, and tetraethylammonium) and was dependent on extracellular pH, membrane depolarization and Naâș and Cl⁻ ions. Such findings indicated the involvement of the neutral and cationic amino acid transporter B⁰,âș (ATB⁰,âș) in the uptake of AMA and RIM, which was demonstrated to be expressed (at the protein level) in the hCMEC/D3 cells. Indeed, AMA and RIM appeared to interact with this transporter, as shown by a 53-70% reduction in the hCMEC/D3 uptake of the specific ATB⁰,âș substrate ÂłH-glycine in their presence. These studies suggest the involvement of ATB⁰,âș in the disposition of these cationic drugs across the BBB, a transporter with the potential to be exploited for targeted drug delivery to the brain

    Transport of Acebutolol through Rabbit Corneal Epithelium

    Get PDF
    The purpose of this study is to characterize transport of acebutolol through the corneal epithelium. Cultured normal rabbit corneal epithelial cells (RCEC) were used to investigate the drug transport. Primary RCEC were seeded on a filter membrane of Transwell-COL? insert coated with fibronectin and were grown in Dulbecco\u27s modified Eagle\u27s medium/nutrient mixture F-12 with various supplements. Measurements of acebutolol permeability through RCEC layer were carried out to assess transcellular permeability coefficient (Ptranscell) in the absence or presence of inhibitors. Paracellular permeability coefficient (Pparacell) was calculated by permeability coefficient of hydrophilic drugs (Pcell). The transcellular permeability of acebutolol from apical side to basal side (A-to-B) showed concentration-dependency. The acebutolol flux in the A-to-B direction was smaller than that of opposite direction. Sodium azide, verapamil, and cyclosporin A enhanced the transcellular permeability of acebutolol in the A-to-B direction. Acebutolol permeability through an excised rabbit cornea was also increased by verapamil. Thus, it was suggested that acebutolol was actively secreted via P-glycoprotein in a corneal epithelium

    Ocular Drug Delivery

    No full text
    Ocular drug delivery has been a major challenge to pharmacologists and drug delivery scientists due to its unique anatomy and physiology. Static barriers (different layers of cornea, sclera, and retina including blood aqueous and blood–retinal barriers), dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution), and efflux pumps in conjunction pose a significant challenge for delivery of a drug alone or in a dosage form, especially to the posterior segment. Identification of influx transporters on various ocular tissues and designing a transporter-targeted delivery of a parent drug has gathered momentum in recent years. Parallelly, colloidal dosage forms such as nanoparticles, nanomicelles, liposomes, and microemulsions have been widely explored to overcome various static and dynamic barriers. Novel drug delivery strategies such as bioadhesive gels and fibrin sealant-based approaches were developed to sustain drug levels at the target site. Designing noninvasive sustained drug delivery systems and exploring the feasibility of topical application to deliver drugs to the posterior segment may drastically improve drug delivery in the years to come. Current developments in the field of ophthalmic drug delivery promise a significant improvement in overcoming the challenges posed by various anterior and posterior segment diseases
    corecore