16,710 research outputs found
Microgravity studies of aggregation in particulate clouds
Aggregation in clouds of submillimeter quartz and volcanic ash particles was studied in microgravity. Particle clouds generated by pulses of air immediately formed electrostatic filamentary aggregates upon cessation of air turbulence. Manual agitation of experiment chambers produced cm-size loose grain clusters which voraciously scavenged free-floating material in their vicinity. A dipole model accounts for these observations. Experimental results have ramifications for the behavior of natural cloud systems and primary accretion of solids in the early solar nebula
Evolutionary consequences of behavioral diversity
Iterated games provide a framework to describe social interactions among
groups of individuals. Recent work stimulated by the discovery of
"zero-determinant" strategies has rapidly expanded our ability to analyze such
interactions. This body of work has primarily focused on games in which players
face a simple binary choice, to "cooperate" or "defect". Real individuals,
however, often exhibit behavioral diversity, varying their input to a social
interaction both qualitatively and quantitatively. Here we explore how access
to a greater diversity of behavioral choices impacts the evolution of social
dynamics in finite populations. We show that, in public goods games, some
two-choice strategies can nonetheless resist invasion by all possible
multi-choice invaders, even while engaging in relatively little punishment. We
also show that access to greater behavioral choice results in more "rugged "
fitness landscapes, with populations able to stabilize cooperation at multiple
levels of investment, such that choice facilitates cooperation when returns on
investments are low, but hinders cooperation when returns on investments are
high. Finally, we analyze iterated rock-paper-scissors games, whose
non-transitive payoff structure means unilateral control is difficult and
zero-determinant strategies do not exist in general. Despite this, we find that
a large portion of multi-choice strategies can invade and resist invasion by
strategies that lack behavioral diversity -- so that even well-mixed
populations will tend to evolve behavioral diversity.Comment: 26 pages, 4 figure
Neutron-Rich Nuclei in Heaven and Earth
An accurately calibrated relativistic parametrization is introduced to
compute the ground state properties of finite nuclei, their linear response,
and the structure of neutron stars. While similar in spirit to the successful
NL3 parameter set, it produces an equation of state that is considerably softer
-- both for symmetric nuclear matter and for the symmetry energy. This
softening appears to be required for an accurate description of several
collective modes having different neutron-to-proton ratios. Among the
predictions of this model are a symmetric nuclear-matter incompressibility of
K=230 MeV and a neutron skin thickness in 208Pb of Rn-Rp=0.21 fm. Further, the
impact of such a softening on the properties of neutron stars is as follows:
the model predicts a limiting neutron star mass of Mmax=1.72 Msun, a radius of
R=12.66 km for a ``canonical'' M=1.4 Msun neutron star, and no (nucleon) direct
Urca cooling in neutrons stars with masses below M=1.3 Msun.Comment: 4 pages, 3 tables, and no figure
Relativistic Jets and Long-Duration Gamma-ray Bursts from the Birth of Magnetars
We present time-dependent axisymmetric magnetohydrodynamic simulations of the
interaction of a relativistic magnetized wind produced by a proto-magnetar with
a surrounding stellar envelope, in the first seconds after core
collapse. We inject a super-magnetosonic wind with ergs
s into a cavity created by an outgoing supernova shock. A strong
toroidal magnetic field builds up in the bubble of plasma and magnetic field
that is at first inertially confined by the progenitor star. This drives a jet
out along the polar axis of the star, even though the star and the magnetar
wind are each spherically symmetric. The jet has the properties needed to
produce a long-duration gamma-ray burst (GRB). At s after core bounce,
the jet has escaped the host star and the Lorentz factor of the material in the
jet at large radii cm is similar to that in the magnetar wind
near the source. Most of the spindown power of the central magnetar escapes via
the relativistic jet. There are fluctuations in the Lorentz factor and energy
flux in the jet on second timescale. These may contribute to
variability in GRB emission (e.g., via internal shocks).Comment: 5 pages, 3 figures, accepted in MNRAS letter, presented at the
conference "Astrophysics of Compact Objects", 1-7 July, Huangshan, Chin
Brownian dynamics simulations of planar mixed flows of polymer solutions at finite concentrations
Periodic boundary conditions for planar mixed flows are implemented in the
context of a multi-chain Brownian dynamics simulation algorithm. The effect of
shear rate , and extension rate , on the size of
polymer chains, \left, and on the polymer contribution to
viscosity, , is examined for solutions of FENE dumbbells at finite
concentrations, with excluded volume interactions between the beads taken into
account. The influence of the mixedness parameter, , and flow strength,
, on \left and , is also examined, where
corresponds to pure shear flow, and
corresponds to pure extensional flow. It is shown that there exists a critical
value, , such that the flow is shear dominated for , and extension dominated for .Comment: 18 pages, 12 figures, to appear in Chemical Engineering Scienc
Frontostriatal Maturation Predicts Cognitive Control Failure to Appetitive Cues in Adolescents
Adolescent risk-taking is a public health issue that increases the odds of poor lifetime outcomes. One factor thought to influence adolescents' propensity for risk-taking is an enhanced sensitivity to appetitive cues, relative to an immature capacity to exert sufficient cognitive control. We tested this hypothesis by characterizing interactions among ventral striatal, dorsal striatal, and prefrontal cortical regions with varying appetitive load using fMRI scanning. Child, teen, and adult participants performed a go/no-go task with appetitive (happy faces) and neutral cues (calm faces). Impulse control to neutral cues showed linear improvement with age, whereas teens showed a nonlinear reduction in impulse control to appetitive cues. This performance decrement in teens was paralleled by enhanced activity in the ventral striatum. Prefrontal cortical recruitment correlated with overall accuracy and showed a linear response with age for no-go versus go trials. Connectivity analyses identified a ventral frontostriatal circuit including the inferior frontal gyrus and dorsal striatum during no-go versus go trials. Examining recruitment developmentally showed that teens had greater between-subject ventral-dorsal striatal coactivation relative to children and adults for happy no-go versus go trials. These findings implicate exaggerated ventral striatal representation of appetitive cues in adolescents relative to an intermediary cognitive control response. Connectivity and coactivity data suggest these systems communicate at the level of the dorsal striatum differentially across development. Biased responding in this system is one possible mechanism underlying heightened risk-taking during adolescence
On the nonlocal viscosity kernel of mixtures
In this report we investigate the multiscale hydrodynamical response of a
liquid as a function of mixture composition. This is done via a series of
molecular dynamics simulations where the wave vector dependent viscosity kernel
is computed for three mixtures each with 7-15 different compositions. We
observe that the nonlocal viscosity kernel is dependent on composition for
simple atomic mixtures for all the wave vectors studied here, however, for a
model polymer melt mixture the kernel is independent of composition for large
wave vectors. The deviation from ideal mixing is also studied. Here it is shown
that a Lennard-Jones mixture follows the ideal mixing rule surprisingly well
for a large range of wave vectors, whereas for both the Kob-Andersen mixture
and the polymer melt large deviations are found. Furthermore, for the polymer
melt the deviation is wave vector dependent such that there exists a critical
length scale at which the ideal mixing goes from under-estimating to
over-estimating the viscosity
Development of the Motivational Interviewing Supervision and Training Scale
The movement to use empirically supported treatments has increased the need for researchers and supervisors to evaluate therapists’ adherence to and the quality with which they implement those interventions. Few empirically supported approaches exist for providing these types of evaluations. This is also true for motivational interviewing, an empirically supported intervention important in the addictions field. This study describes the development and psychometric evaluation of the Motivational Interviewing Supervision and Training Scale (MISTS), a measure intended for use in training and supervising therapists implementing motivational interviewing. Satisfactory interrater reliability was found (generalizability coefficient p2 = .79), and evidence was found supporting the convergent and discriminant validity of the MISTS. Recommendations for refinement of the measure and future research are discussed
- …