4,445 research outputs found
Morphology of the Nuclear Disk in M87
A deep, fuly sampled diffraction limited (FWHM ~ 70 mas) narrow-band image of
the central region in M87 was obtained with the Wide Filed and Planetary Camera
2 of the Hubble Space Telescope using the dithering technique. The
H-alpha+[NII] continuum subtracted image reveals a wealth of details in the
gaseous disk structure described earlier by Ford et al. (1994). The disk
morphology is dominated by a well defined three-arm spiral pattern. In
addition, the major spiral arms contain a large number of small "arclets"
covering a range of sizes (0.1-0.3 arcsec = 10-30 pc). The overall surface
brightness profile inside a radius ~1.5" (100 pc) is well represented by a
power-law I(mu) ~ mu^(-1.75), but when the central ~40 pc are excluded it can
be equally well fit by an exponential disk. The major axis position angle
remains constant at about PA_disk ~ 6 deg for the innermost ~1", implying the
disk is oriented nearly perpendicular to the synchrotron jet (PA_jet ~ 291
deg). At larger radial distances the isophotes twist, reflecting the gas
distribution in the filaments connecting to the disk outskirts. The ellipticity
within the same radial range is e = 0.2-0.4, which implies an inclination angle
of i~35 deg. The sense of rotation combined with the dust obscuration pattern
indicate that the spiral arms are trailing.Comment: 5 pages, 3 postscript figures, to appear in the Proceedings of the
M87 Workshop, Ringberg castle, Germany, 15-19 Sep 1997, also available from
http://jhufos.pha.jhu.edu/~zlatan/papers.htm
Will Jets Identify the Progenitors of Type Ia Supernovae?
We use the fact that a Type Ia supernova has been serendipitously discovered
near the jet of the active galaxy 3C 78 to examine the question of whether jets
can enhance accretion onto white dwarfs. One interesting outcome of such a
jet-induced accretion process is an enhanced rate of novae in the vicinity of
jets. We present results of observations of the jet in M87 which appear to have
indeed discovered 11 novae in close proximity to the jet. We show that a
confirmation of the relation between jets and novae and Type Ia supernovae can
finally identify the elusive progenitors of Type Ia supernovae.Comment: 10 pages, 3 figure
A Funny Thing Happened on the Way to PD: Revising PDS Leaders\u27 Roles in Support of Children\u27s Learning Directly
School leaders typically encounter district policies and procedures that make it difficult to facilitate school improvement efforts effectively (Bottoms & Fry, 2009; Bottoms & Schmidt-Davis, 2010). When the San Antonio Independent School District earned a state level distinction as a District of Innovation, the PDS principal and university faculty liaison took advantage of this opportunity to develop innovative curricular initiatives, including the implementation of a bi-weekly half-day of planning and professional development for elementary teachers while students take field trips and participate in Curiosity Corner, an 80-minute block for engineering challenges. When the PDS leaders\u27 plan to garner enough parent and community volunteers to sustain Curiosity Corner failed, they shifted their attention from directly supporting teachers\u27 learning during these half-day enrichment sessions, instead taking direct responsibility for planning and facilitating student learning. This unexpected turn of events brought with it unanticipated benefits to both students and PDS leaders
Polarization Diagnostics for Cool Core Cluster Emission Lines
The nature of the interaction between low-excitation gas filaments at ~104 K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ~107 K in the centers of galaxy clusters remains a puzzle. The presence of a strong, empirical correlation between the two gas phases is indicative of a fundamental relationship between them, though as yet of undetermined cause. The cooler filaments, originally thought to have condensed from the hot gas, could also arise from a merger or the disturbance of cool circumnuclear gas by nuclear activity. Here, we have searched for intrinsic line emission polarization in cool core galaxy clusters as a diagnostic of fundamental transport processes. Drawing on developments in solar astrophysics, direct energetic particle impact induced polarization holds the promise to definitively determine the role of collisional processes such as thermal conduction in the ISM physics of galaxy clusters, while providing insight into other highly anisotropic excitation mechanisms such as shocks, intense radiation fields, and suprathermal particles. Under certain physical conditions, theoretical calculations predict of the order of 10% polarization. Our observations of the filaments in four nearby cool core clusters place stringent upper limits ( 0.1%) on the presence of emission line polarization, requiring that if thermal conduction is operative, the thermal gradients are not in the saturated regime. This limit is consistent with theoretical models of the thermal structure of filament interfacesPeer reviewe
Thermal Constraints on the Emplacement Rate of a Large Intrusive Complex: The Manaslu Leucogranite, Nepal Himalaya
The emplacement of the Manaslu leucogranite body (Nepal, Himalaya) has been modelled as the accretion of successive sills. The leucogranite is characterized by isotopic heterogeneities suggesting limited magma convection, and by a thin (<100 m) upper thermal aureole. These characteristics were used to constrain the maximum magma emplacement rate. Models were tested with sills injected regularly over the whole duration of emplacement and with two emplacement sequences separated by a repose period. Additionally, the hypothesis of a tectonic top contact, with unroofing limiting heat transfer during magma emplacement, was evaluated. In this latter case, the upper limit for the emplacement rate was estimated at 3·4 mm/year (or 1·5 Myr for 5 km of granite). Geological and thermobarometric data, however, argue against a major role of fault activity in magma cooling during the leucogranite emplacement. The best model in agreement with available geochronological data suggests an emplacement rate of 1 mm/year for a relatively shallow level of emplacement (granite top at 10 km), uninterrupted by a long repose period. The thermal aureole temperature and thickness, and the isotopic heterogeneities within the leucogranite, can be explained by the accretion of 20-60 m thick sills intruded every 20 000-60 000 years over a period of 5 Myr. Under such conditions, the thermal effects of granite intrusion on the underlying rocks appear limited and cannot be invoked as a cause for the formation of migmatite
Magnon Mediated Electric Current Drag Across a Ferromagnetic Insulator Layer
In a semiconductor hererostructure, the Coulomb interaction is responsible
for the electric current drag between two 2D electron gases across an electron
impenetrable insulator. For two metallic layers separated by a ferromagnetic
insulator (FI) layer, the electric current drag can be mediated by a
nonequilibrium magnon current of the FI. We determine the drag current by using
the semiclassical Boltzmann approach with proper boundary conditions of
electrons and magnons at the metal-FI interface.Comment: 13 pages, 2 figures: to appear in PR
Holographic renormalization and supersymmetry
Holographic renormalization is a systematic procedure for regulating divergences
in observables in asymptotically locally AdS spacetimes. For dual boundary
field theories which are supersymmetric it is natural to ask whether this defines a
supersymmetric renormalization scheme. Recent results in localization have brought
this question into sharp focus: rigid supersymmetry on a curved boundary requires
specific geometric structures, and general arguments imply that BPS observables,
such as the partition function, are invariant under certain deformations of these
structures. One can then ask if the dual holographic observables are similarly invariant.
We study this question in minimal N = 2 gauged supergravity in four and
five dimensions. In four dimensions we show that holographic renormalization precisely
reproduces the expected field theory results. In five dimensions we find that
no choice of standard holographic counterterms is compatible with supersymmetry,
which leads us to introduce novel finite boundary terms. For a class of solutions satisfying
certain topological assumptions we provide some independent tests of these
new boundary terms, in particular showing that they reproduce the expected VEVs
of conserved charges
- …