2,687 research outputs found

    Babies and Brains: Habituation in Infant Cognition and Functional Neuroimaging

    Get PDF
    Many prominent studies of infant cognition over the past two decades have relied on the fact that infants habituate to repeated stimuli – i.e. that their looking times tend to decline upon repeated stimulus presentations. This phenomenon had been exploited to reveal a great deal about the minds of preverbal infants. Many prominent studies of the neural bases of adult cognition over the past decade have relied on the fact that brain regions habituate to repeated stimuli – i.e. that the hemodynamic responses observed in fMRI tend to decline upon repeated stimulus presentations. This phenomenon has been exploited to reveal a great deal about the neural mechanisms of perception and cognition. Similarities in the mechanics of these two forms of habituation suggest that it may be useful to relate them to each other. Here we outline this analogy, explore its nuances, and highlight some ways in which the study of habituation in functional neuroimaging could yield novel insights into the nature of habituation in infant cognition – and vice versa

    A Lightweight 6 1/2-ft Aeroshell for an Early Mars Probe Mission

    Get PDF
    Lightweight 6 1/2 ft sphere-cone honeycomb sandwich structure with elastomeric ablator for Mars probe missio

    Concorde Noise-Induced Building Vibrations, Montgomery County, Maryland

    Get PDF
    A series of studies are reported to assess the noise induced building vibrations associated with Concorde operations. The levels of induced vibration and associated indoor/outdoor noise levels resulting from aircraft and nonaircraft events in selected homes, historic and other buildings near Dulles International Airport were recorded. The building response resulting from aircraft operations was found to be directly proportional to the overall sound pressure level and approximately independent of the aircraft type. The noise levels and, consequently, the response levels were observed to be higher for the Concorde operations than for the CTOL operations. Furthermore, the vibration could be closely reproduced by playing aircraft noise through a loudspeaker system located near the vibration measurement location. Nonaircraft events such as door closing were again observed to result in higher response levels than those induced by aircraft

    Echinococcus metacestodes as laboratory models for the screening of drugs against cestodes and trematodes

    Get PDF
    Among the cestodes, Echinococcus granulosus, Echinococcus multilocularis and Taenia solium represent the most dangerous parasites. Their larval stages cause the diseases cystic echinococcosis (CE), alveolar echincoccosis (AE) and cysticercosis, respectively, which exhibit considerable medical and veterinary health concerns with a profound economic impact. Others caused by other cestodes, such as species of the genera Mesocestoides and Hymenolepis, are relatively rare in humans. In this review, we will focus on E. granulosus and E. multilocularis metacestode laboratory models and will review the use of these models in the search for novel drugs that could be employed for chemotherapeutic treatment of echinococcosis. Clearly, improved therapeutic drugs are needed for the treatment of AE and CE, and this can only be achieved through the development of medium-to-high throughput screening approaches. The most recent achievements in the in vitro culture and genetic manipulation of E. multilocularis cells and metacestodes, and the accessability of the E. multilocularis genome and EST sequence information, have rendered the E. multilocularis model uniquely suited for studies on drug-efficacy and drug target identification. This could lead to the development of novel compounds for the use in chemotherapy against echinococcosis, and possibly against diseases caused by other cestodes, and potentially also trematode

    Quiet Sun Magnetic Field Measurements Based on Lines with Hyperfine Structure

    Full text link
    The Zeeman pattern of MnI lines is sensitive to hyperfine structure (HFS) and, they respond to hG magnetic field strengths differently from the lines used in solar magnetometry. This peculiarity has been employed to measure magnetic field strengths in quiet Sun regions. However, the methods applied so far assume the magnetic field to be constant in the resolution element. The assumption is clearly insufficient to describe the complex quiet Sun magnetic fields, biasing the results of the measurements. We present the first syntheses of MnI lines in realistic quiet Sun model atmospheres. The syntheses show how the MnI lines weaken with increasing field strength. In particular, kG magnetic concentrations produce NnI 5538 circular polarization signals (Stokes V) which can be up to two orders of magnitude smaller than the weak magnetic field approximation prediction. Consequently, (1) the polarization emerging from an atmosphere having weak and strong fields is biased towards the weak fields, and (2) HFS features characteristic of weak fields show up even when the magnetic flux and energy are dominated by kG fields. For the HFS feature of MnI 5538 to disappear the filling factor of kG fields has to be larger than the filling factor of sub-kG fields. Stokes V depends on magnetic field inclination according to the simple consine law. Atmospheres with unresolved velocities produce asymmetric line profiles, which cannot be reproduced by simple one-component model atmospheres. The uncertainty of the HFS constants do not limit the use of MnI lines for magnetometry.Comment: Accepted for publication in ApJ. 10 pages, 14 figure

    The CFEPS Kuiper Belt Survey: Strategy and Pre-survey Results

    Full text link
    We present the data acquisition strategy and characterization procedures for the Canada-France Ecliptic Plane Survey (CFEPS), a sub-component of the Canada-France-Hawaii Telescope Legacy Survey. The survey began in early 2003 and as of summer 2005 has covered 430 square degrees of sky within a few degrees of the ecliptic. Moving objects beyond the orbit of Uranus are detected to a magnitude limit of mRm_R=23 -- 24 (depending on the image quality). To track as large a sample as possible and avoid introducing followup bias, we have developed a multi-epoch observing strategy that is spread over several years. We present the evolution of the uncertainties in ephemeris position and orbital elements as the objects progress through the epochs. We then present a small 10-object sample that was tracked in this manner as part of a preliminary survey starting a year before the main CFEPS project. We describe the CFEPS survey simulator, to be released in 2006, which allows theoretical models of the Kuiper Belt to be compared with the survey discoveries since CFEPS has a well-documented pointing history with characterized detection efficiencies as a function of magnitude and rate of motion on the sky. Using the pre-survey objects we illustrate the usage of the simulator in modeling the classical Kuiper Belt.Comment: to be submitted to Icaru

    A review of potential contaminants in Australian livestock feeds and proposed guidance levels for feed

    Get PDF
    Contaminants of man-made and natural origin need to be managed in livestock feeds to protect the health of livestock and that of human consumers of livestock products. This requires access to information on the transfer from feed to food to inform risk profiles and assessments, and to guide management interventions such as regulation or Hazard Analysis Critical Control Point approaches. This paper reviews contaminants of known and potential concern in the production of livestock feeds in Australia and compares existing but differing state and national regulatory standards with international standards. The contaminants considered include man-made organic chemical contaminants (e.g. legacy pesticides), elemental contaminants (e.g. arsenic, cadmium, lead), phytotoxins (e.g. gossypol) and mycotoxins (e.g. aflatoxins). Reference is made to scientific literature and evaluations by regulators to propose maximum levels that can be used for guidance by those involved in managing contamination incidents or developing feed safety programs. © 2013 CSIRO

    Impressions of force in visual perception of collision events: A test of the causal asymmetry hypothesis

    Full text link
    When two objects interact they exert equal and opposite forces on each other. According to the causal asymmetry hypothesis, however, when one object has been identified as causal and the other as that in which the effect occurs, the causal object is perceived as exerting greater force on the effect object than the latter is perceived as exerting on the former. An example of this is a stimulus in which one object moves toward another stationary one, and when contact occurs the former stops and the latter moves away. In this situation the initially moving object is identified as causal, so the causal asymmetry hypothesis predicts that more force will be judged to be exerted by the moving object on the stationary one than by the stationary one on the moving one. Participants’ judgments consistently supported this hypothesis for a variety of stimuli in which kinematic parameters were varied, even when the initially moving object reversed direction after contact
    • 

    corecore