121 research outputs found
A deep campaign to characterize the synchronous radio/X-ray mode switching of PSR B0943+10
We report on simultaneous X-ray and radio observations of the mode-switching
pulsar PSR B0943+10 obtained with the XMM-Newton satellite and the LOFAR, LWA
and Arecibo radio telescopes in November 2014. We confirm the synchronous
X-ray/radio switching between a radio-bright (B) and a radio-quiet (Q) mode, in
which the X-ray flux is a factor ~2.4 higher than in the B-mode. We discovered
X-ray pulsations, with pulsed fraction of 38+/-5% (0.5-2 keV), during the
B-mode, and confirm their presence in Q-mode, where the pulsed fraction
increases with energy from ~20% up to ~65% at 2 keV. We found marginal evidence
for an increase in the X-ray pulsed fraction during B-mode on a timescale of
hours. The Q-mode X-ray spectrum requires a fit with a two-component model
(either a power-law plus blackbody or the sum of two blackbodies), while the
B-mode spectrum is well fit by a single blackbody (a single power-law is
rejected). With a maximum likelihood analysis, we found that in Q-mode the
pulsed emission has a thermal blackbody spectrum with temperature ~3.4x10^6 K
and the unpulsed emission is a power-law with photon index ~2.5, while during
B-mode both the pulsed and unpulsed emission can be fit by either a blackbody
or a power law with similar values of temperature and photon index. A Chandra
image shows no evidence for diffuse X-ray emission. These results support a
scenario in which both unpulsed non-thermal emission, likely of magnetospheric
origin, and pulsed thermal emission from a small polar cap (~1500 m^2) with a
strong non-dipolar magnetic field (~10^{14} G), are present during both radio
modes and vary in intensity in a correlated way. This is broadly consistent
with the predictions of the partially screened gap model and does not
necessarily imply global magnetospheric rearrangements to explain the mode
switching.Comment: To be published on The Astrophysical Journa
The PULSE@Parkes project: A new observing technique for long-term pulsar monitoring
The PULSE@Parkes project has been designed to monitor the rotation of radio
pulsars over time spans of days to years. The observations are obtained using
the Parkes 64-m and 12-m radio telescopes by Australian and international high
school students. These students learn the basis of radio astronomy and
undertake small projects with their observations. The data are fully calibrated
and obtained with the state-of-the-art pulsar hardware available at Parkes. The
final data sets are archived and are currently being used to carry out studies
of 1) pulsar glitches, 2) timing noise, 3) pulse profile stability over long
time scales and 4) the extreme nulling phenomenon. The data are also included
in other projects such as gamma-ray observatory support and for the Parkes
Pulsar Timing Array project. In this paper we describe the current status of
the project and present the first scientific results from the Parkes 12-m radio
telescope. We emphasise that this project offers a straightforward means to
enthuse high school students and the general public about radio astronomy while
obtaining scientifically valuable data sets.Comment: accepted for publication by PAS
Development of a pulsar-based timescale
Using observations of pulsars from the Parkes Pulsar Timing Array (PPTA)
project we develop the first pulsar-based timescale that has a precision
comparable to the uncertainties in international atomic timescales. Our
ensemble of pulsars provides an Ensemble Pulsar Scale (EPS) analogous to the
free atomic timescale Echelle Atomique Libre (EAL). The EPS can be used to
detect fluctuations in atomic timescales and therefore can lead to a new
realisation of Terrestrial Time, TT(PPTA11). We successfully follow features
known to affect the frequency of the International Atomic Timescale (TAI) and
we find marginally significant differences between TT(PPTA11) and TT(BIPM11).
We discuss the various phenomena that lead to a correlated signal in the pulsar
timing residuals and therefore limit the stability of the pulsar timescale.Comment: Accepted for publication in MNRA
The UTMOST: A hybrid digital signal processor transforms the MOST
The Molonglo Observatory Synthesis Telescope (MOST) is an 18,000 square meter
radio telescope situated some 40 km from the city of Canberra, Australia. Its
operating band (820-850 MHz) is now partly allocated to mobile phone
communications, making radio astronomy challenging. We describe how the
deployment of new digital receivers (RX boxes), Field Programmable Gate Array
(FPGA) based filterbanks and server-class computers equipped with 43 GPUs
(Graphics Processing Units) has transformed MOST into a versatile new
instrument (the UTMOST) for studying the dynamic radio sky on millisecond
timescales, ideal for work on pulsars and Fast Radio Bursts (FRBs). The
filterbanks, servers and their high-speed, low-latency network form part of a
hybrid solution to the observatory's signal processing requirements. The
emphasis on software and commodity off-the-shelf hardware has enabled rapid
deployment through the re-use of proven 'software backends' for its signal
processing. The new receivers have ten times the bandwidth of the original MOST
and double the sampling of the line feed, which doubles the field of view. The
UTMOST can simultaneously excise interference, make maps, coherently dedisperse
pulsars, and perform real-time searches of coherent fan beams for dispersed
single pulses. Although system performance is still sub-optimal, a pulsar
timing and FRB search programme has commenced and the first UTMOST maps have
been made. The telescope operates as a robotic facility, deciding how to
efficiently target pulsars and how long to stay on source, via feedback from
real-time pulsar folding. The regular timing of over 300 pulsars has resulted
in the discovery of 7 pulsar glitches and 3 FRBs. The UTMOST demonstrates that
if sufficient signal processing can be applied to the voltage streams it is
possible to perform innovative radio science in hostile radio frequency
environments.Comment: 12 pages, 6 figure
Status Update of the Parkes Pulsar Timing Array
The Parkes Pulsar Timing Array project aims to make a direct detection of a
gravitational-wave background through timing of millisecond pulsars. In this
article, the main requirements for that endeavour are described and recent and
ongoing progress is outlined. We demonstrate that the timing properties of
millisecond pulsars are adequate and that technological progress is timely to
expect a successful detection of gravitational waves within a decade, or
alternatively to rule out all current predictions for gravitational wave
backgrounds formed by supermassive black-hole mergers.Comment: 10 pages, 3 figures, Amaldi 8 conference proceedings, accepted by
Classical & Quantum Gravit
MeerTime - the MeerKAT Key Science Program on Pulsar Timing
The MeerKAT telescope represents an outstanding opportunity for radio pulsar
timing science with its unique combination of a large collecting area and
aperture efficiency (effective area 7500 m), system temperature
(K), high slew speeds (1-2 deg/s), large bandwidths (770 MHz at 20cm
wavelengths), southern hemisphere location (latitude ) and
ability to form up to four sub-arrays. The MeerTime project is a five-year
program on the MeerKAT array by an international consortium that will regularly
time over 1000 radio pulsars to perform tests of relativistic gravity, search
for the gravitational wave signature induced by supermassive black hole
binaries in the timing residuals of millisecond pulsars, explore the interiors
of neutron stars through a pulsar glitch monitoring programme, explore the
origin and evolution of binary pulsars, monitor the swarms of pulsars that
inhabit globular clusters and monitor radio magnetars. In addition to these
primary programmes, over 1000 pulsars will have their arrival times monitored
and the data made immediately public. The MeerTime pulsar backend comprises two
server-class machines each of which possess four Graphics Processing Units. Up
to four pulsars can be coherently dedispersed simultaneously up to dispersion
measures of over 1000 pc cm. All data will be provided in psrfits
format. The MeerTime backend will be capable of producing coherently
dedispersed filterbank data for timing multiple pulsars in the cores of
globular clusters that is useful for pulsar searches of tied array beams. All
MeerTime data will ultimately be made available for public use, and any
published results will include the arrival times and profiles used in the
results.Comment: 15 pages, MeerKAT Science: On the Pathway to the SKA, 25-27 May,
2016, Stellenbosch, South Africa, available at:
https://pos.sissa.it/277/011/pd
On detection of the stochastic gravitational-wave background using the Parkes pulsar timing array
We search for the signature of an isotropic stochastic gravitational-wave
background in pulsar timing observations using a frequency-domain correlation
technique. These observations, which span roughly 12 yr, were obtained with the
64-m Parkes radio telescope augmented by public domain observations from the
Arecibo Observatory. A wide range of signal processing issues unique to pulsar
timing and not previously presented in the literature are discussed. These
include the effects of quadratic removal, irregular sampling, and variable
errors which exacerbate the spectral leakage inherent in estimating the steep
red spectrum of the gravitational-wave background. These observations are found
to be consistent with the null hypothesis, that no gravitational-wave
background is present, with 76 percent confidence. We show that the detection
statistic is dominated by the contributions of only a few pulsars because of
the inhomogeneity of this data set. The issues of detecting the signature of a
gravitational-wave background with future observations are discussed.Comment: 12 pages, 8 figures, 7 tables, accepted for publication in MNRA
The international pulsar timing array project: using pulsars as a gravitational wave detector
The International Pulsar Timing Array project combines observations of
pulsars from both Northern and Southern hemisphere observatories with the main
aim of detecting ultra-low frequency (~10^-9 to 10^-8 Hz) gravitational waves.
Here we introduce the project, review the methods used to search for
gravitational waves emitted from coalescing supermassive binary black-hole
systems in the centres of merging galaxies and discuss the status of the
project.Comment: accepted by Classical and Quantum Gravity. Review talk for the
Amaldi8 conference serie
Rotation measure variations for 20 millisecond pulsars
We report on variations in the mean position angle of the 20 millisecond
pulsars being observed as part of the Parkes Pulsar Timing Array (PPTA)
project. It is found that the observed variations are dominated by changes in
the Faraday rotation occurring in the Earth's ionosphere. Two ionospheric
models are used to correct for the ionospheric contribution and it is found
that one based on the International Reference Ionosphere gave the best results.
Little or no significant long-term variation in interstellar RM was found with
limits typically about 0.1 rad m yr in absolute value. In a few
cases, apparently significant RM variations over timescales of a few 100 days
or more were seen. These are unlikely to be due to localised magnetised regions
crossing the line of sight since the implied magnetic fields are too high. Most
probably they are statistical fluctuations due to random spatial and temporal
variations in the interstellar electron density and magnetic field along the
line of sight.Comment: Accepted for publication in Astrophysics & Space Scienc
Measurements of pulse jitter and single-pulse variability in millisecond pulsars using MeerKAT
Using the state-of-the-art SKA precursor, the MeerKAT radio telescope, we
explore the limits to precision pulsar timing of millisecond pulsars achievable
due to pulse stochasticity (jitter). We report new jitter measurements in 15 of
the 29 pulsars in our sample and find that the levels of jitter can vary
dramatically between them. For some, like the 2.2~ms pulsar PSR J2241--5236, we
measure an implied jitter of just 4~ns/hr, while others like the 3.9~ms
PSR J0636--3044 are limited to 100 ns/hr. While it is well known that
jitter plays a central role to limiting the precision measurements of arrival
times for high signal-to-noise ratio observations, its role in the measurement
of dispersion measure (DM) has not been reported, particularly in broad-band
observations. Using the exceptional sensitivity of MeerKAT, we explored this on
the bright millisecond pulsar PSR J0437--4715 by exploring the DM of literally
every pulse. We found that the derived single pulse DMs vary by typically
0.0085 cm pc from the mean, and that the best DM estimate is limited by
the differential pulse jitter across the band. We postulate that all
millisecond pulsars will have their own limit on DM precision which can only be
overcome with longer integrations. Using high-time resolution filterbank data
of 9 s, we also present a statistical analysis of single pulse
phenomenology. Finally, we discuss optimization strategies for the MeerKAT
pulsar timing program and its role in the context of the International Pulsar
Timing Array (IPTA).Comment: 16 pages, 9 figure
- …