28,873 research outputs found

    Gravitation as Anholonomy

    Full text link
    A gravitational field can be seen as the anholonomy of the tetrad fields. This is more explicit in the teleparallel approach, in which the gravitational field-strength is the torsion of the ensuing Weitzenboeck connection. In a tetrad frame, that torsion is just the anholonomy of that frame. The infinitely many tetrad fields taking the Lorentz metric into a given Riemannian metric differ by point-dependent Lorentz transformations. Inertial frames constitute a smaller infinity of them, differing by fixed-point Lorentz transformations. Holonomic tetrads take the Lorentz metric into itself, and correspond to Minkowski flat spacetime. An accelerated frame is necessarily anholonomic and sees the electromagnetic field strength with an additional term.Comment: RevTeX4, 10 pages, no figures. To appear in Gen. Rel. Gra

    The Equivalence Principle Revisited

    Get PDF
    A precise formulation of the strong Equivalence Principle is essential to the understanding of the relationship between gravitation and quantum mechanics. The relevant aspects are reviewed in a context including General Relativity, but allowing for the presence of torsion. For the sake of brevity, a concise statement is proposed for the Principle: "An ideal observer immersed in a gravitational field can choose a reference frame in which gravitation goes unnoticed". This statement is given a clear mathematical meaning through an accurate discussion of its terms. It holds for ideal observers (time-like smooth non-intersecting curves), but not for real, spatially extended observers. Analogous results hold for gauge fields. The difference between gravitation and the other fundamental interactions comes from their distinct roles in the equation of force.Comment: RevTeX, 18 pages, no figures, to appear in Foundations of Physic

    Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems

    Get PDF
    We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-SS chains with S=1/2S=1/2, 11 and 3/23/2.Comment: 20 pages, 12 figure

    Gravitomagnetic Moments of the Fundamental Fields

    Full text link
    The quadratic form of the Dirac equation in a Riemann spacetime yields a gravitational gyromagnetic ratio \kappa_S = 2 for the interaction of a Dirac spinor with curvature. A gravitational gyromagnetic ratio \kappa_S = 1 is also found for the interaction of a vector field with curvature. It is shown that the Dirac equation in a curved background can be obtained as the square--root of the corresponding vector field equation only if the gravitational gyromagnetic ratios are properly taken into account.Comment: 8 pages, RevTeX Style, no figures, changed presentation -- now restricted to fields of spin 0, 1/2 and 1 -- some references adde

    Connectivity-Driven Coherence in Complex Networks

    Full text link
    We study the emergence of coherence in complex networks of mutually coupled non-identical elements. We uncover the precise dependence of the dynamical coherence on the network connectivity, on the isolated dynamics of the elements and the coupling function. These findings predict that in random graphs, the enhancement of coherence is proportional to the mean degree. In locally connected networks, coherence is no longer controlled by the mean degree, but rather on how the mean degree scales with the network size. In these networks, even when the coherence is absent, adding a fraction s of random connections leads to an enhancement of coherence proportional to s. Our results provide a way to control the emergent properties by the manipulation of the dynamics of the elements and the network connectivity.Comment: 4 pages, 2 figure

    Orbital multicriticality in spin gapped quasi-1D antiferromagnets

    Full text link
    Motivated by the quasi-1D antiferromagnet CaV2_2O4_4, we explore spin-orbital systems in which the spin modes are gapped but orbitals are near a macroscopically degenerate classical transition. Within a simplified model we show that gapless orbital liquid phases possessing power-law correlations may occur without the strict condition of a continuous orbital symmetry. For the model proposed for CaV2_2O4_4, we find that an orbital phase with coexisting order parameters emerges from a multicritical point. The effective orbital model consists of zigzag-coupled transverse field Ising chains. The corresponding global phase diagram is constructed using field theory methods and analyzed near the multicritical point with the aid of an exact solution of a zigzag XXZ model.Comment: 9 page

    Nematoides em pimentas do gênero Capsicum.

    Get PDF
    bitstream/item/72245/1/ct-1041.pd
    corecore